Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (1): 115-121    
  本期目录 | 过刊浏览 | 高级检索 |
一种用于CT偏置扫描重建的指数型加权函数
杜乙,王贤刚(),向新程
An exponential-type weighting function for CT reconstruction with a displaced detector array
Yi DU,Xiangang WANG(),Xincheng XIANG
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1347 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对计算机层析成像(CT)偏置扫描滤波反投影(FBP)重建算法中加权函数形式复杂、抑噪性能不足的问题,该文提出了一种形式简洁、连续光滑的Sigmoid指数型加权函数。通过对偏置重建过程进行Fourier变换,推导得到加权函数对白噪声的频域响应余项,相较Parker、Wang这2种加权函数,该文函数频域响应余项的高频部分幅度更低。该文分别进行了扇形束与锥形束几何在无噪声和有噪声情况下的偏置扫描仿真实验,重建图像采取主客观相结合的方法进行评价。结果表明:在理想无噪声条件下,3种加权函数重建图像无显著差异;在有噪声条件下,该文函数重建图像整体平滑、边缘锐利、对比度突出;F-范数、均方差(MSE)、对比度噪声比(CNR)这3项指标均有改善。相较Parker与Wang函数,该文函数形式简洁且抑噪性能更为优异。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 计算机层析成像(CT)偏置扫描重建加权函数抑噪    
Abstract

For computed tomography (CT) with a displaced detector array, projections should be weighted by a weighting function to fit the filtered-backprojection (FBP) image reconstruction algorithm. Existing weighting functions have complicated piecewise forms and do not give good noise suppression. This study uses Sigmoid-like exponential weighting function, which is continuous, differentiable, and simple. Fourier transforms are used for the weighted FBP algorithm to obtain the residual terms of the frequency response for white noise. The residuals of this function are lower than those of wary function at high frequencies. The fan-beam and cone-beam geometries with displaced detector arrays were simulated with the images reconstructed using the FBP weighted by the Parker function, Wang function, and the present function. Subjective and objective evaluations show that for ideal noise-free conditions, the image qualities for the three functions are quite close; while with noisy conditions, the images given by the present function are smoother with sharper edges and higher contrast with improved F-norm, and mean squared error (MSE), contrast noise ratio (CNR) indices. Thus, this function is simpler and gives better noise suppression than the existing Parker and Wang functions.

Key wordscomputed tomography (CT)    displaced detector scanning    reconstruction    weighting function    noise suppression
收稿日期: 2013-10-11      出版日期: 2015-05-15
基金资助:国家自然科学基金资助项目 (61171115);北京市青年英才计划资助项目(YETP0158)
引用本文:   
杜乙,王贤刚,向新程. 一种用于CT偏置扫描重建的指数型加权函数[J]. 清华大学学报(自然科学版), 2015, 55(1): 115-121.
Yi DU,Xiangang WANG,Xincheng XIANG. An exponential-type weighting function for CT reconstruction with a displaced detector array. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 115-121.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I1/115
  等距扇形束偏置扫描示意图
  文中3种加权函数对比示意图
  加权函数余项频率响应
  扇形束全扫描与偏置扫描重建结果对比
  锥形束全扫描与偏置扫描重建结果对比
  采用Parker函数重建结果
  采用Wang函数重建结果
  采用本文函数重建结果
加权函数 指标
F-范数 MSE CNR
Parker
Wang
本文
18.8066
18.8051
17.4366
0.0054
0.0054
0.0046
1 472
1 692
2 168
  F-范数、均方误差、对比度—噪声比计算结果
[1] 赵飞, 路宏年, 孙翠丽. 一种新的二维 CT 扫描方式及其重建算法[J]. 光学技术, 2006, 32(2): 284-289. ZHAO Fei, LU Hongnian, SUN Cuili. New scan mode for 2D-CT and its reconstruction algorithm[J]. Optical Technique, 2006, 32(2): 812-817. (in Chinese)
[2] 陈云斌, 李寿涛, 王远, 等. 转台一次偏置扫描的 ICT 重建算法[J]. 中国体视学与图像分析, 2011, 16(3): 248-253. CHEN Yunbin, LI Shoutao, WANG Yuan, et al.An ICT reconstruction algorithm for rotation off-centered scan[J]. Chinese Journal of Stereology and Image Analysis, 2011, 16(3): 248-253. (in Chinese)
[3] 傅健, 路宏年. 工业 CT 半扫描成像技术[J]. 北京航空航天大学学报, 2005, 31(9): 966-969. FU Jian, LU Hongnian. Half-scan mode for industrial CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(9): 966-969. (in Chinese)
[4] Cho P S, Rudd A D, Johnson R H. Cone-beam CT from width-truncated projections[J]. Computerized Medical Imaging and Graphics, 1996, 20(1): 49-57.
[5] Mettivier G, Russo P, Lanconelli N, et al.Cone-beam breast computed tomography with a displaced flat panel detector array[J]. Medical Physics, 2012, 39(5): 2805-2819.
[6] ZHANG Guozhi, Jacobs R, Nuyts J, et al. Assessment of the central artifact in cone beam CT imaging with an offset geometry [C]// Medical Imaging 2012: Physics of Medical Imaging. San Diego, USA: Society of Photo-Optical Instrumentation Engineers, 2012: 83132U1-83132U7.
[7] Schafer D, Grass M, Vav De Haar P. FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector[J]. Medical Physics, 2011, 38(7): S85-S94.
[8] LI Liang, CHEN Zhiqiang, ZHANG Li, et al.A new cone-beam X-ray CT system with a reduced size planar detector[J]. High Energy Physics and Nuclear Physics, 2006, 30(8): 812-817.
[9] 李亮, 陈志强, 张丽, 等. 一种用于小体积偏置探测器锥束 CT 系统的反投影滤波重建算法[J]. CT 理论与应用研究, 2007, 16(1): 1-9. LI Liang, CHEN Zhiqiang, ZHANG Li, et al.A BPF-type reconstruction algorithm for cone-beam CT system with a reduced size detector[J]. Computerized Tomography Theory and Applications, 2007, 16(1): 1-9. (in Chinese)
[10] Parker D L. Optimal short scan convolution reconstruction for fan beam CT[J]. Medical Physics, 1982, 9: 254-257.
[11] WANG Ge. X-ray micro-CT with a displaced detector array[J]. Medical Physics, 2002, 29(7): 1634-1636.
[12] Zamyatin A A, Taguchi K, Silver M D. Helical cone beam CT with an asymmetrical detector[J]. Medical Physics, 2005, 32(10): 3117-3127.
[1] 万欣, 刘锡明, 苗积臣, 吴志芳. 改进的多层螺旋CT线性插值算法[J]. 清华大学学报(自然科学版), 2016, 56(12): 1346-1351.
[2] 郑辑涛, 何红红, 张涛, 朱纪洪. 分治法重建数字地形的子网凸包合并算法[J]. 清华大学学报(自然科学版), 2015, 55(8): 895-899,905.
[3] 王梦蛟,丁辉,王广志. 基于相机模型的锥束CT重建误差校正[J]. 清华大学学报(自然科学版), 2015, 55(1): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn