Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (1): 93-97    
  本期目录 | 过刊浏览 | 高级检索 |
剩余污泥低温热水解中试
吴静1(),姜艳1,2,曹知平1,王广启1,左剑恶1,王凯军1
2. 爱尔兰国立高威大学 工程与信息学院, 土木工程系, 高威, 爱尔兰
Pilot study of the thermal hydrolysis of excess waste sludge at low temperatures
Jing WU1(),Yan JIANG1,2,Zhiping CAO1,Guangqi WANG1,Jiane ZUO1,Kaijun WANG1
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment,Tsinghua University, Beijing 100084, China
2. Department of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
全文: PDF(1221 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

中国污泥有机物质量比低,厌氧消化速率慢、产气少, 60℃左右的热水解是改善措施之一。该文在热水解罐中进行了剩余污泥低温热水解的中试研究,采用热泵供热。对水力停留时间(HRT)、 温度(T)、 污泥含固率和有机物质量比(CVSS/CSS)等对剩余污泥低温热水解的影响以及重要性进行了分析。试验结果表明: 低温热水解的最佳工艺条件为: HRT为1 d, 温度54~60℃,污泥含固率3%。加碱可以促进水解,当污泥含固率5%时,调节pH到10可使VSS去除率和有机物溶出率分别增加46.8%和100%。正交试验结果表明: 温度、污泥含固率和有机物质量比都是热水解的关键影响因素,各因素对VSS去除率和有机物溶出率影响的重要性顺序一致,由大到小的顺序为: 污泥含固率、温度、有机物质量比。在最佳工况下,剩余污泥低温热水解后进行中温(35℃)厌氧消化,消化时间10d的情况下,沼气产量比未低温热水解时增加44%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 剩余污泥热水解中温厌氧消化正交试验含固率    
Abstract

With low organic matter content, sludge in China has low reaction rates and low biogas production rates. Thermal hydrolysis at about 60 ℃ will enhance the digestion. Thermal hydrolysis of excess sludge at low temperatures was conducted in thermal tanks with a heat pump as a heat source. The effects of hydraulic retention time (HRT), temperature (T), solid content and organic matter ratio (CVSS/CSS) of the sludge on thermal hydrolysis were analyzed. The results showed that the optimal operating conditions for thermal hydrolysis was HRT=1 d, T=54-60℃, and a solid content=3%. Adding alkalis enhanced the hydrolysis, with a solid content of 5%, NaOH was added to increase the pH to 10 to increase the VSS removal rate by 46.8% and the solution rate of organic substances by 100%. Orthogonal experiments indicated that the temperature, solid content and CVSS/CSS were all crucial to the VSS removal rate and the solution rate of the organic matter. The solid content had the largest effect followed by the temperature and CVSS/CSS. The biogas production rate of the sludge hydrolyzed with optimal conditions during 10 days anaerobic digestion at 35℃ was 44% higher than that of sludge without hydrolysis.

Key wordsexcess waste sludge    thermal hydrolysis    anaerobic digestion    orthogonal experiment    solid content
收稿日期: 2013-02-01      出版日期: 2015-01-20
基金资助:国家 “八六三” 高技术项目 (2009AA064702);国家自然科学基金资助项目 (91334112,51061130555)
引用本文:   
吴静,姜艳,曹知平,王广启,左剑恶,王凯军. 剩余污泥低温热水解中试[J]. 清华大学学报(自然科学版), 2015, 55(1): 93-97.
Jing WU,Yan JIANG,Zhiping CAO,Guangqi WANG,Jiane ZUO,Kaijun WANG. Pilot study of the thermal hydrolysis of excess waste sludge at low temperatures. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 93-97.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I1/93
取值 质量浓度/(mg·L-1) r*/% 质量浓度/(g·L-1) 有机物质量比
COD SCOD SS VSS
取值范围 17145~64636 42~326 0.01~1.04 9.63~58.46 4.32~35.21 0.41~0.57
平均值 30984 131 0.45 33.31 18.11 0.52
  剩余污泥理化特性
  HRT的影响
  温度的影响
  污泥含固率的影响
  pH的影响
  有机物质量比对VSS去除率和有机物溶出率的影响
因素的水平 温度/℃ 含固率/% CVSS/CSS
1 50~53 1 0.43~0.50
2 54~60 3 0.51~0.56
3 61~65 5
  正交试验因素水平设计
评价指标 方差来源 平方和SE 自由度f 均方S F P
VSS去除率/% 温度 185.790 2 92.895 9.858 0.000
含固率 1038.910 2 519.455 55.127 0.000
CVSS/CSS 260.964 1 260.964 27.695 0.000
误差 1517.078 161 9.423
有机物溶出率/(gSCOD·gVSS-1) 温度 0.080 2 0.040 15.145 0.000
含固率 0.425 2 0.212 80.150 0.000
CVSS/CSS 0.026 1 0.026 9.902 0.002
误差 0.419 158 0.003
  VSS去除率和SCOD溶出率方差分析
评价指标 项目 温度/℃ 含固率/% CVSS/CSS
VSS去除率/% 水平1均值K1 16.56 12.43 18.61
水平2均值K2 21.35 21.37 21.59
水平3均值K3 20.35 22.25
极差R 4.78 9.82 2.98
有机物溶出率/(gSCOD·gVSS-1) 水平1均值K1 0.200 0.313 0.210
水平2均值K2 0.223 0.257 0.240
水平3均值K3 0.277 0.154
极差R 0.077 0.159 0.030
  VSS去除率和有机物溶出率极差分析
[1] 钱靖华, 田宁宁, 余杰, 等. 城镇污水污泥厌氧消化技术及能源消耗[J]. 给水排水, 2010, 36: 102-104. QIAN Jinghua, TIAN Ningning, YU Jie, et al.Anaerobic digestion and energy consumption of municipal waste sludge[J]. Water and Waste Water, 2010, 36: 102-104. (in Chinese)
[2] 康晓鹍, 王世和. 城市污水处理厂污泥沼气资源化利用[J]. 中国沼气, 2009, 27(2): 35-37. KANG Xiaokun, WANG Shihe. Resourcerizing of sludge from municipal wastewater plant by anaerobic digestion[J]. China Biogas, 2009, 27(2): 35-37. (in Chinese)
[3] Frolund B, Palmgren B, Keiding R, et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758.
[4] Higgins M J, Novak J T, Novak J T. Characterization of exocellular protein and its role in bio-flocculation[J]. Journal of Environmental Engineering-ASCE, 1997, 123(5): 479-485.
[5] Novak J T, Sadler M E, Murty S N . Mechanisms of floc destruction during anaerobic digestion and the effect on conditioning and dewatering of biosolids[J]. Water Research, 2003, 37(13): 3136-3144.
[6] Appels L, Baeyens J, Degreve J, et al.Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781.
[7] Pavlostathis S G, Giraldogomez E. Kinetic of anaerobic treatment[J]. Water Science and Technology, 1991, 24(8): 35-59.
[8] Pavlostathis S G, Giraldogomez E. Kinetic of anaerobic treatment—A critical review[J]. Critical Reviews in Environment Control, 1991, 21(5-6): 411-490.
[9] Pavlostathis S, Gosset J. A kinetic model for anaerobic digestion of biological sludge[J]. Biotechnology and Bioengineering, 1986, 27(5): 1519-1530.
[10] Haug R T, Stuckey D C, Gossett J M. Effect of thermal pretreatment on digestibility and de-waterrability of organic sludge[J]. Journal Water Pollution Control Federation, 1978, 50(1): 73-85.
[11] Pinnekamp J. Effect of thermal pretreatment of sewage- sludge on anaerobic-digestion[J]. Water Science and Technology, 1989, 21(4-5): 97-108.
[12] Takashima M. Examination on process configurations incorporating thermal treatment for anaerobic digestion of sewage sludge[J]. Journal of Environmental Engineering- ASCE, 2008, 134(7): 543-549.
[13] Carrere H, Bougrier C, Castets D, et al.Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(13): 1551-1555.
[14] 张洪林, 范丽华, 曹春艳, 等. 高温预处理对污泥厌氧消化影响的研究[J]. 辽宁师范大学学报: 自然科学版, 2007, 30(3): 336-338. ZHANG Honglin, FAN Lihua, CAO Chunyan, et al.Studies on effect of pretreatment in high temperature on anaerobic digestion of sludge[J]. Journal of Liaoning Normal University: Natural Science Edition, 2007, 30(3): 336-338. (in Chinese)
[15] Perez-Elvira S I, Ferreira L C, Donoso-Bravo A, et al. Full-stream and part-stream ultrasound treatment effect on sludge anaerobic digestion[J]. Water Science and Technology, 2010, 61(6): 1363-1372.
[16] Hariklia N G, Umur Y, Ioannis V S, et al.Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature[J]. Water Research, 2003, 37: 4561-4572.
[17] Borges E S M, Chernicharo C A L. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction[J]. Brazilian Journal of Chemical Engineering, 2009, 26(3): 469-480.
[18] Wang Q, Noguchi C, Hara Y, et al.Studies on anaerobic digestion mechanism: Influence of pretreatment temperature on biodegradation of waste activated sludge[J]. Environment Technology, 1997, 18: 999-1008.
[19] 吴静, 赵鹏娟, 田磊, 等. 高温污泥厌氧消化器的启动[J]. 环境科学, 2011, 32(2): 520-523. WU Jing, ZHAO Pengjuan, TIAN Lei, et al.Start-up of a thermophilic anaerobic sludge digester[J]. Environmental Science, 2011, 32(2): 520-523. (in Chinese)
[20] Rocher M, Roux G, Goma G, et al.Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment[J]. Water Science and Technology, 2001, 44: 437-444.
[21] Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1-3): 51-67.
[22] Ge H D, Jensen P D, Batstone D J. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge[J]. Water Research, 2010, 44(1): 123-130.
[23] 苑宏英, 张华星, 陈银广, 等. pH对剩余污泥厌氧发酵产生的COD、 磷及氨氮的影响[J]. 环境科学, 2006, 27(7): 1358-1361. YUAN Hongying, ZHANG Huaxing, CHEN Yinguang, et al.Impact of pH on the generation of COD, phosphorous and ammonia-nitrogen during the anaerobic fermentation of excess activated sludge[J]. Environmental Science, 2006, 27(7): 1358-1361. (in Chinese)
[24] 欧阳云凤. 剩余活性污泥水解工艺的研究 [D]. 天津: 天津大学, 2008: 37. OUYANG Yunfeng. Study on the Hydrolysis of Residual Activated Sludge [D]. Tianjin: Tianjin University, 2006. (in Chinese)
[25] Ge H Q, Jensen P D, Batstone D J. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge[J]. Journal of Hazardous Materials, 2011, 187(1-3), 355-361.
[26] Bolzonella D, Pavan P, Zanette M, et al.Two-phase anaerobic digestion of waste activated sludge: Effect of an extreme thermophilic prefermentation[J]. Industrial and Engineering Chemistry Research, 2007, 46(21), 6650-6655.
[27] Lu J, Gavala H N, Skiadas I V, et al.Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. Journal of Environmental Management, 2008, 88(4): 881-889.
[1] 邵高鹏, 张扬军. 基于流场偏差分析的燃料电池空压机优化设计[J]. 清华大学学报(自然科学版), 2019, 59(6): 490-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn