Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (5): 503-507    
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于外推陷波滤波的孤立强散射旁瓣抑制
李增辉, 常雯, 杨健
清华大学 电子工程系, 北京 100084
Sidelobe suppression of isolated strong scatterers based on extrapolated notch filtering
LI Zenghui, CHANG Wen, YANG Jian
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3271 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了有效抑制极化合成孔径雷达(SAR)图像中的孤立强散射旁瓣, 并同时保持图像统计特性和极化散射特性, 提出了一种基于二维外推陷波滤波的孤立强散射旁瓣抑制的方法。该方法首先运用Chirp-Z变换进行AR(1)模型参数辨识, 并在此基础上推导得到了基于稳态Kalman预测理论的数据外推公式; 然后, 运用线性相位等波纹陷波滤波器实现强散射信号滤除; 最后, 在频域还原强散射信号主瓣, 并精确补偿滤波时引入的图像幅度误差。不同于空间变迹法和自适应旁瓣抑制方法, 该方法处理过程简单, 且有效保持了图像分辨率、图像统计特性和极化散射特性。仿真和实测数据处理验证了该方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李增辉
常雯
杨健
关键词 合成孔径雷达(SAR)旁瓣抑制信号外推陷波滤波    
Abstract:A two-dimensional extrapolated notch filtering method was developed to suppress sidelobes due to isolated strong scatterers in polarimetric synthetic aperture radar (SAR) images and to maintain the statistical and polarization scattering characteristics. A Chirp-Z transform is used for the AR(1) parameter identification with two-dimensional signal extrapolation based on steady-state Kalman prediction theory. The strong scatterer signals are eliminated by filtering the extrapolated signal with a linear-phase equiripple notch filter. The mainlobes of the strong scatterer signals are recovered in the frequency domain and the image amplitude error is accurately compensated in the filtering process. Unlike both spatially variant apodization (SVA) and adaptive sidelobe suppression (ASS), this method preserves the image resolution, the statistics and the polarization scattering characteristics with a simpler procedure. The effectiveness of this method is demonstrated by simulated and real data.
Key wordssynthetic aperture radar (SAR)    sidelobe suppression    signal extrapolation    notch filtering
收稿日期: 2014-06-20      出版日期: 2015-08-04
ZTFLH:  TN957.52  
通讯作者: 杨健,教授,E-mail:yangjian_ee@tsinghua.edu.cn     E-mail: yangjian_ee@tsinghua.edu.cn
引用本文:   
李增辉, 常雯, 杨健. 基于外推陷波滤波的孤立强散射旁瓣抑制[J]. 清华大学学报(自然科学版), 2015, 55(5): 503-507.
LI Zenghui, CHANG Wen, YANG Jian. Sidelobe suppression of isolated strong scatterers based on extrapolated notch filtering. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 503-507.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I5/503
  图1 TerraSARGX单极化SAR 图像
  图2 一维陷波滤波器幅相响应
  图3 二维陷波滤波器幅度响应
  表1 等波纹陷波滤波器设计参数
  图4 仿真二维强散射点旁瓣抑制效果
  图5 VV 极化SLC图像强散射旁瓣抑制效果
[1] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images [M]. Raleigh, NC, USA: SciTech Publishing, 2004.
[2] Cumming I G, Wong F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation [M]. London, UK: Artech House, 2004.
[3] 杨茹良, 李海英, 李世强, 等. 高分辨率微波成像 [M]. 北京: 国防工业出版社, 2013.YANG Ruliang, LI Haiying, LI Shiqiang, et al. High Resolution Microwave Imaging [M]. Beijing: National Defence Industry Press, 2013. (in Chinese)
[4] 杨科, 廖桂生, 徐青, 等. 改进的合成孔径雷达旁瓣抑制空间变迹算法 [J]. 电波科学学报, 2012, 27(6): 1158-1165.YANG Ke, LIAO Guisheng, XU Qing, et al. Improve SVA method or SAR sidelobe suppression [J]. Chinese Journal of Radio Science, 2012, 27(6): 1158-1165. (in Chinese)
[5] DeGraaf S R. Sidelobe reduction via adaptive FIR filtering in SAR imagery [J]. IEEE Transactions on Image Processing, 1994, 3(3): 292-301.
[6] Pastina D, Colone F, Lmobardo P. Effect of apodization on SAR image understanding [J]. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(11): 3533-3551.
[7] Cao S, Zheng Y F, Ewing R L. Wavelet-based waveform for effective sidelobe suppression in radar signal [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 265-284.
[8] Madisetti V K. The Digial Signal Processing Handbook [M]. 2nd ED. Boca Raton, FL, USA: CRC press, 2010.
[9] Parks T W, McClellan J H. Chebyshev approximation for nonrecursive digital filters with linear phase [J]. IEEE Transaction Circuit Theory, 1972, CT-19 (2): 189-194.
[10] Tseng C C. Design of two-dimensional FIR digital filters by McClellan transform and quadratic programming [J]. IEE Proc Vision, Image and Signal Processing, 2001, 148 (5) : 325-331.
[11] LI Zenghui, XU Bin, YANG Jian, et al. A steady-state Kalman predictor-based filtering strategy for non-overlapping sub-band spectral estimation [J]. Sensors, 2015, 15: 110-134.
[12] 邓自立. 最优估计理论及其应用: 建模、滤波、信息融合估计 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2005.DENG Zili. Optimal Estimation Theory with Applications-Modeling, Filtering and Information Fusion Estimation [M]. Harerbin: Harbin Institute of Technology Press, 2005. (in Chinese)
[1] 杨倩文, 孙富春. 基于泛化空间正则自动编码器的遥感图像识别[J]. 清华大学学报(自然科学版), 2018, 58(2): 113-121.
[2] 马文婷,杨健,崔一,高伟. 地面高度起伏对SAR图像匹配性能影响的定量分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 432-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn