Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (5): 558-564,571    
  自动化 本期目录 | 过刊浏览 | 高级检索 |
陈元琳, 柴跃廷, 刘义, 徐扬
清华大学 自动化系, 电子商务交易技术国家工程实验室, 北京 100084
Transaction rating credibility based on user group preference
CHEN Yuanlin, CHAI Yueting, LIU Yi, XU Yang
National Engineering Laboratory for E-Commerce Technologies, Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(1505 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用交易评价数据对商品和卖家进行信用评价以供用户参考成为电子商务在线交易平台最基本的服务。然而,目前的信用评价方法很少考虑不同用户间的评价偏好差异,将所有用户的评价同等看待,导致蓄意刷分或恶意差评等信用造假问题屡禁不止。该文提出了一种基于群体偏好的交易评价可信度确立方法。首先采用K-means聚类算法将用户分为3类用户群,通过实证数据分析验证了用户群间明显的评价偏好差异,然后利用评价偏好特征确立每类用户不同类型交易评价的可信度,并提出了动态的交易评价可信度更新策略。该方法能够有效地限制信用造假行为。
E-mail Alert
关键词 K-means聚类群体偏好交易评价可信度行为分析    
Abstract:Transaction and rating data can be used to evaluate credit as a key underlying service provided by online transaction platforms. However, credit evaluation methods pay little attention to user rating preferences, so rating manipulations can expand arbitrarily. A method is given here to determine transaction rating credibility based on group preferences. This method uses the K-means clustering algorithm to divide all the users into three groups and analyzes and validates each group's rating preferences. Then, the algorithm provides three steps to determine the credibility of ratings on different levels for different user groups based on these preferences. This paper also provides a strategy to dynamically update the group division and credibility to effectively restrict credit manipulation.
Key wordsK-means clustering    group preference    transaction rating    credibility    behavior analysis
收稿日期: 2014-12-31      出版日期: 2015-08-04
ZTFLH:  TP391.1  
通讯作者: 柴跃廷,教授,     E-mail:
陈元琳, 柴跃廷, 刘义, 徐扬. 基于群体偏好的交易评价可信度[J]. 清华大学学报(自然科学版), 2015, 55(5): 558-564,571.
CHEN Yuanlin, CHAI Yueting, LIU Yi, XU Yang. Transaction rating credibility based on user group preference. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 558-564,571.
链接本文:  或
  表1 部分前100用户评分个数表
  表2 部分前100用户综合加权评分等级比率
  图1 聚类4组各级评价比例曲线图
  图2 聚类3组各级评价比例曲线图
  表3 各组各级评价比例平均值
  图3 各组各级评价比例平均值曲线
  表4 全体评价与各级评价概率因子
  表5 用户群组评价可信度权重系数表
[1] Liu Y. Word of mouth for movies: Its dynamics and impact on box office revenue [J]. Journal of Marketing, 2006, 70(3): 74-89.
[2] Hennig-Thurau T, Gwinner K P, Walsh G, et al. Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet [J]. Journal of Interactive Marketing, 2004, 18(1): 38-52.
[3] Bansal H S, Voyer P A. Word-of-mouth processes within a services purchase decision context [J]. Journal of Service Research, 2000, 3(2): 166-177.
[4] Gupta P, Harris J. How e-WOM recommendations influence product consideration and quality of choice: A motivation to process information perspective [J]. Journal of Business Research, 2010, 63(9-10): 1041-1049.
[5] Zhang Y, Bian J, Zhu W. Trust fraud: A crucial challenge for China's e-commerce market [J]. Electronic Commerce Research and Applications, 2013, 12(5): 299-308.
[6] Resnick P, Kuwabara K, Zeckhauser R, et al. Reputation systems [J]. Communications of the ACM, 2000, 43(12): 45-48.
[7] Mcknight H, Kacmar C. Factors of information credibility for an Internet advice site [C]//Proceedings of the 39th Annual Hawaii International Conference on System Sciences. Piscataway, NJ, USA: IEEE, 2006, 6: 113b-113b.
[8] Kusumasondjaja S, Shanka T, Marchegiani C. Credibility of online reviews and initial trust: The roles of reviewer's identity and review valence [J]. Journal of Vacation Marketing, 2012, 18(3): 185-195.
[9] Xu Q. Should I trust him? The effects of reviewer profile characteristics on eWOM credibility [J]. Computers in Human Behavior, 2014, 33: 136-144.
[10] Patton M, J Euclid FrakturxCp sang A. Technologies for trust in electronic commerce [J]. Electronic Commerce Research, 2004, 4(1-2): 9-21.
[11] Pan Y, Zhang J Q. Born unequal: A study of the helpfulness of user-generated product reviews [J]. Journal of Retailing, 2011, 87(4): 598-612.
[12] Dellarocas C. Immunizing online reputation reporting systems against unfair ratings and discriminatory behavior [C]//Proceedings of the 2nd ACM Conference on Electronic Commerce. New York, NY: ACM, 2000: 150-157.
[13] Ghose A, Ipeirotis P G. Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(10): 1498-1512.
[14] Picazo-Vela S, Chou S Y, Melcher A J, et al. Why provide an online review? An extended theory of planned behavior and the role of big-five personality traits [J]. Computers in Human Behavior, 2010, 26(4): 685-696.
[15] Li H, Liu Y, Suomi R. Exploring the factors motivating e-service users' WOM behaviour [J]. International Journal of Services Technology and Management, 2013, 19(4): 187-200.
[16] Epstein S. The stability of behavior: I. On predicting most of the people much of the time [J]. Journal of Personality and Social Psychology, 1979, 37(7): 1097-1126.
[17] Ajzen I. The theory of planned behavior [J]. Organizational Behavior and Human Decision Processes, 1991, 50(2): 179-211.
[18] Mcauley J, Leskovec J. Hidden factors and hidden topics: Understanding rating dimensions with review text [C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2013: 165-172.
[1] 李舟军, 吴春明, 王啸. 基于沙盒的Android应用风险行为分析与评估[J]. 清华大学学报(自然科学版), 2016, 56(5): 453-460.
[2] 涂山山, 陶怀舟, 黄永峰. 基于半监督学习的即时语音通信隐藏检测[J]. 清华大学学报(自然科学版), 2015, 55(11): 1246-1252.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持