Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (6): 604-611    
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于天气雷达的长江三峡暴雨临近预报方法及其精度评估
杨文宇1, 李哲1, 倪广恒1, 洪阳1, Ali Zahraei2
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084, 中国;
2. 美国国家海洋和大气管理局 合作遥感科学与技术中心, 纽约 NY 10031, 美国
Evaluation of a radar-based storm nowcasting method in the Three Gorges
YANG Wenyu1, LI Zhe1, NI Guangheng1, HONG Yang1, Ali Zahraei2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Cooperative Remote Sensing Science and Technology Center, National Oceanic and Atmospheric Administration, New York NY 10031, USA
全文: PDF(1927 KB)  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 基于网格追踪的临近预报外推(pixel-based nowcasting, PBN)算法能够预报降雨的平移、旋转和变形。为了评价该算法在长江三峡地区的应用效果, 该文利用三峡万县S波段雷达2010年汛期观测到的11场典型降雨过程, 采用相关系数、探测率、误报率、临界成功指数等4种评价指标对PBN算法进行验证。结果显示: 对于全部11场降雨, 该算法1小时预报结果与实际观测的相关系数接近0.6, 整体预报效果较好。在针对4场典型降雨的分析中所有4个指标均表明: PBN算法对独立且相对稳定的大面积层状降雨预报效果最好, 对包含多个对流型雨团生成与消亡的降雨预报效果最差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文宇
李哲
倪广恒
洪阳
Ali Zahraei
关键词 临近预报天气雷达精度评估    
Abstract:A pixel-based nowcasting algorithm (PBN) was applied at the Three Gorges Region to forecast the rainfall in the short-term. During the 2010 summer, 11 rainfall events gathered with radar were used to evaluate the algorithm performance with four performance statistics including the correlation coefficient, probability of detection, false alarm ratio and critical success indes. The correlation coefficient of the one-hour forecast results is close to 0.6, which suggests that the PBN algorithm effectively tracks and predicts rainfall events within an hour of their occurrence. An analysis of four rainfall events using these performance statistics suggested that the PBN algorithm is a promising nowcasting platform for typical stratiform rainfall events over a large area. However, the algorithm still cannot accurately forecast rainfall with several convective centers.
Key wordsnowcasting    weather radar    accuracy assessment
收稿日期: 2014-06-22      出版日期: 2015-09-08
ZTFLH:  TV111.3  
  P332.2  
基金资助: 
通讯作者: 倪广恒,教授,E-mail:ghni@mail.tsinghua.edu.cn     E-mail: ghni@mail.tsinghua.edu.cn
引用本文:   
杨文宇, 李哲, 倪广恒, 洪阳, Ali Zahraei. 基于天气雷达的长江三峡暴雨临近预报方法及其精度评估[J]. 清华大学学报(自然科学版), 2015, 55(6): 604-611.
YANG Wenyu, LI Zhe, NI Guangheng, HONG Yang, Ali Zahraei. Evaluation of a radar-based storm nowcasting method in the Three Gorges. Journal of Tsinghua University(Science and Technology), 2015, 55(6): 604-611.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I6/604
  表1 万县S波段天气雷达的基本参数[5]
  表2 降雨事件二元分类预测示意
  图1 4场代表性降雨过程初始时刻雷达反射率空间分布(2010年)
  表3 全部11场降雨不同预报时段相关系数
  图2 预报值与观测值的相关系数随预见期变化图
  图3 降雨过程的探测率随预见期变化图
  图4 降雨过程的误报率随预见期变化图
  图5 降雨过程的临界成功指数随预见期变化图
[1] 卢江涛. 利用天气雷达估测和预报降雨分布的研究 [D]. 清华大学, 2011.LU Jiangtao. Study on Precipitation Estimation and Nowcasting Based on Weather Radar [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[2] 袁晓清, 倪广恒, 潘安君, 等. 基于最优化算法的北京市新一代天气雷达Z-R 关系研究 [J]. 水文, 2010, 30 (1): 1-6. YUAN Xiaoqing, NI Guangheng, PAN Anjun, et al. NEXRAD Z-R power relationship in Beijing based on optimization algorithm [J]. Journal of China Hydrology, 2010, 30(1): 1-6. (in Chinese)
[3] 潘安君, 卢江涛, 田富强, 等. 雷达测雨的最优化方法在分布式城市洪水算法中的应用 [J]. 中国水利, 2011(23): 54-55. PAN Anjun, LU Jiangtao, TIAN Fuqiang, et al. Radar rainfall optimization method in a distributed model of urban flood [J]. China Water Recourses, 2011 (23): 54-55. (in Chinese)
[4] 李哲, 杨大文, 洪阳, 等. 基于天气雷达的长江三峡区间降雨定量估测方法 [J]. 水力发电学报, 2014, 33(3): 5.LI Zhe, YANG Dawen, HONG Yang, et al. Radar-based quantitative precipitation estimate in the Three Gorges Region of Yangtze River [J].Journal of Hydroelectric Engineering, 2014, 33(3): 5 (in Chinese)
[5] 李哲, 杨大文, 田富强, 等. 基于地面雨情信息的长江三峡区间洪水预报研究 [J]. 水力发电学报, 2013, 32(1): 42-49. LI Zhe, YANG Dawen, TIAN Fuqiang, et al. Flood forecast for Three Gorges region of the Yangtze based on ground-observed rainfall [J]. Journal of Hydroelectric Engineering, 2013, 32(1): 42-49. (in Chinese).
[6] Berenguer F M, Sempere T D. Radar-based rainfall nowcasting at European scale: Long-term evaluation and performance assessment [C]//Proceedings of the 36th AMS Conference on Radar Meteorology. Breckenridge, USA: American Meteorological Society, 2013.
[7] Wilson J W, Ebert E E, Saxen T R, et al. Sydney 2000 forecast demonstration project: Convective storm nowcasting [J]. Weather & Forecasting, 2004, 19: 131-150.
[8] Zahraei A, Hsu K, Sorooshian S, et al. Quantitative precipitation nowcasting: A Lagrangianpixel-based approach [J]. Atmospheric Research, 2012, 118: 418-434.
[9] Golding B W. Nimrod: A system for generating automated very short range forecasts [J].Meteorological Applications, 1998, 5(1), 1-16.
[10] Seed A W. A dynamic and spatial scaling approach to advection forecasting [J].Journal of Applied Meteorology and Climatology, 2003, 42: 381-388.
[11] Dixon M, Wiener G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting: A radar-based methodology [J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6):785-797.
[12] Montanari L, Montanari A, Toth E A. A comparison and uncertainty assessment of system analysis techniques for short-term quantitative precipitation nowcasting based on radar images [Z/OL]. (2014-06-20), http://onlinelibrary.wiley.com/doi/10.1029/2005JD006729/.
[13] Evans A N. Cloud tracking using ordinal measures and relaxation labelling [C]//Proceedings of International Geoscience and Remote Sensing Symposium. Hamburg, Germany: IEEE, 1999: 1259-1261.
[14] Evans A N. On the use of ordinal measures for cloud tracking [J]. International Journal of Remote Sensing, 2000, 21(9):1939-1944.
[15] Kambhamettu C, Palaniappan K, Hasler A F. Hierarchical motion decomposition for cloud-tracking [C]//Proceedings of AMS 17th Conference Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology. Albuquerque, USA: American Meteorological Society, 2001: 318-323.
[16] Bergen J R, Anandan P, Hanna K J, et al. Hierarchical model-based motion estimation [C]//Proceedings of Computer Vision-ECCV. Berlin, Germany: Springer, 1992: 237-252.
[17] Toklu C, Erdem A T, Sezan M I, et al. Tracking motion and intensity variations using hierarchical 2-D mesh modeling for synthetic object transfiguration [J]. Graphical Models and Image Processing, 1996, 58(6): 553-573
[18] Bellerby T J. High-resolution 2-D cloud-top advection from geostationary satellite imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3639-3648.
[19] 王改利, 刘黎平. 多普勒雷达资料在暴雨临近预报中的应用 [J]. 气象, 2006, 31(10): 12-15.WANG Gaili, LIU Liping. Application of Doppler radar data to nowcasting of heavy rainfall [J]. Meteorological Monthly, 2006, 31(10): 12-15. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn