Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (10): 1061-1065    DOI: 10.16511/j.cnki.qhdxxb.2016.22.039
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
基于AlN/α-SiC的声表面波谐振器应变响应特性
陈硕, 尤政
清华大学 精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
AlN/α-SiC based surface acoustic wave resonator and its strain response
CHEN Shuo, YOU Zheng
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
全文: PDF(1523 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 面向高温环境应用的微纳传感器在燃气轮机健康监控、地热井环境监控等领域具有广泛的应用前景。该文主要介绍了一种基于AlN薄膜和α-SiC衬底的声表面波谐振器,讨论了谐振器的应变敏感性来源,提出了一种基于应变场-波速关系计算谐振器应变敏感系数的方法。采用微纳米加工工艺加工了谐振器,并进行了材料表征。测量了谐振器的应变敏系数:具有1.5 μm厚AlN压电薄膜的AlN/α-SiC基声表面波谐振器在298 K下应变敏感系数为0.515×10-6/με,与计算结果具有较好一致性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈硕
尤政
关键词 声表面波谐振器氮化铝碳化硅应变响应    
Abstract:The need to monitor the health of gas turbines, geothermal wells and other equipment in harsh environments requires micro and nano sensors for harsh environments. This paper introduces an AlN/α-SiC based surface acoustic wave resonator. The strain coefficient factor (SCF) of the resonator is analyzed and calculated theoretically based on the strain field and a proposed strain-velocity relationship. The resonator is micro-fabricated and characterized to determine the SCF of the fabricated resonator. An AlN/α-SiC resonator with a 1.5 μm thick AlN layer, has an SCF of 0.515×10-6/με at 298 K, which matches well with the calculated results.
Key wordssurface acoustic wave resonator    aluminum nitride    silicon carbide    strain response
收稿日期: 2016-03-10      出版日期: 2016-10-15
ZTFLH:  TN65  
通讯作者: 尤政,教授,E-mail:yz-dpi@mail.tsinghua.edu.cn     E-mail: yz-dpi@mail.tsinghua.edu.cn
引用本文:   
陈硕, 尤政. 基于AlN/α-SiC的声表面波谐振器应变响应特性[J]. 清华大学学报(自然科学版), 2016, 56(10): 1061-1065.
CHEN Shuo, YOU Zheng. AlN/α-SiC based surface acoustic wave resonator and its strain response. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1061-1065.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.039  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1061
  图AlN/α-SiC基SAWR示意图
  图AlN/α-SiC基SAWR的加工工艺
  图 SAWR应力敏感性测量的边界条件
  图 AIN/α-SiC层叠结构的表征
  图 AIN/α-SiCSAWR反射系数S11(T=298K)
  图 AlN/α-SiC基SAWR中心谐振频率温度敏感性测量结果
  图 AlN/α-SiC基SAWR的品质因数与温度关系
  图 AlN/α-SiC基SAWR中心谐振频率应变敏感性测量结果
[1] Penza M, Aversa P, Cassano G, et al. Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating [J]. Sensors & Actuators B: Chemical, 2007, 127(1): 168-178.
[2] Benetti M, Cannata D, Di Pietrantonio F, et al. Pressure sensor based on surface acoustic wave resonators [C]//Sensors, 2008 IEEE. Lecce, Italy, 2008: 1024-1027.
[3] Yatsuda H, Kogai T. 3F-3 liquid sensor using SAW and SH-SAW on quartz [J]. Proceedings of the IEEE Ultrasonics Symposium, 2006, 1: 552-555.
[4] Hornsteiner J, Born E, Fischerauer G, et al. Surface acoustic wave sensors for high-temperature applications [C]//Proceedings of the 1998 IEEE International Frequency Control Symposium. Pasadena, CA, USA, 1998: 615-620.
[5] Blampain E, Elmazria O, Legrani O, et al. Platinum/AlN/sapphire SAW resonator operating in GHz range for high temperature wireless SAW sensor [C]//2013 IEEE International Ultrasonics Symposium (IUS). Prague, Czech, 2013: 1081-1084.
[6] Lin C M, Chen Y Y, Felmetsger V V, et al. Surface acoustic wave propagation properties in AlN/3C-SiC/Si composite structure [C]//2010 IEEE Ultrasonics Symposium (IUS). San Diego, CA, USA, 2010: 1696-1699.
[7] Littles J W, Jacobs L J, Zureick A H. The Ultrasonic Measurement of Elastic Constants of Structural FRP Composites [M]. New York, USA: Springer, 1997.
[8] Rao R R, Padmaja A. Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory [J]. Journal of Applied Physics, 1987, 62(2): 440-443.
[9] Hashimoto K, Hashimoto K Y. Surface Acoustic Wave Devices in Telecommunications [M]. Berlin, Germany: Springer, 2000.
[10] Akiyama T, Briand D, De Rooij N F. Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors [J]. Journal of Micromechanics and Microengineering, 2012, 22(8), 085034.
[11] Li C, Liu X, Shu L, et al. AlN-based surface acoustic wave resonators for temperature sensing applications [J]. Materials Express, 2015, 5(4): 367-370.
[12] Li Z, Bradt R C. Thermal expansion of the hexagonal (4H) polytype of SiC [J]. Journal of Applied Physics, 1986, 60(2): 612-614.
[13] Wang K, Reeber R R. Thermal expansion of GaN and AIN [C]//MRS Proceedings. Cambridge, UK: Cambridge University Press, 1997, 482: 863.
[14] Jones S, Menon C S. Non-linear elastic behavior of hexagonal silicon carbide [J]. Physica Status Solidi: B, 2014, 251(6): 1186-1191.
[15] Pandey D K, Yadav R R. Temperature dependent ultrasonic properties of aluminium nitride [J]. Applied Acoustics, 2009, 70(3): 412-415.
[1] 严泽凡, 刘荣正, 刘兵, 邵友林, 刘马林. SiC纳米包覆颗粒烧结行为的分子动力学模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn