Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (4): 387-393    DOI: 10.16511/j.cnki.qhdxxb.2016.24.008
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
山地灌溉管道水力特性的数值模拟
刘家宏1, 周晋军1,2, 王浩1,3, 吕宏兴2
1. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038;
2. 西北农林科技大学 水利与建筑工程学院, 杨凌 712100;
3. 水利部 水资源与水生态工程技术研究中心, 北京 100044
Numerical simulation of the hydraulic characteristics of hilly irrigation systems
LIU Jiahong1, ZHOU Jinjun1,2, WANG Hao1,3, LV Hongxing2
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China;
3. Research Center for Water Resources and Hydro-ecological Engineering, Ministry of Water Resources, Beijing 100044, China
全文: PDF(2057 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 有压管道的水力特性是管道设计工作的依据和前提。为研究山地灌溉输水管道水力特性,该文建立山地灌溉输水管道水动力学数学模型,运用计算流体动力学数值模拟方法,对有压灌溉管道中凸起管段的水力特性进行模拟。该文以输入流量为控制变量,计算管道水流能量损失,分析了Re与管道凸起段135°弯头局部阻力系数的关系;研究输水管道凸起段水压和流速分布特性。结果表明:当Re<5.0×104时弯头局部阻力系数随着Re增大而迅速减小,当Re>7.0×104时弯头局部阻力系数趋于稳定,当2.3×104 4时,弯头Ⅰ、弯头Ⅱ、弯头Ⅲ、弯头Ⅳ局部阻力系数变幅范围为4.12~0.37;弯头处静压分布均表现出外侧压力大,内侧压力小;速度值的大小均表现为弯头外侧速度小,内侧速度大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘家宏
周晋军
王浩
吕宏兴
关键词 山地灌溉管道局部阻力系数Reynolds数计算流体动力学    
Abstract:The hydraulic characteristics of pressurized pipelines are important for irrigation system designs. The hydrodynamics irrigation pipes in a hilly terrain were analyzed here using a computational fluid dynamics model. The energy losses in the pipeline were calculated with the input discharge as the control variable. The relationship between the Reynolds number and flow resistance coefficient of a convex section (a 135° elbow) was analyzed. The pressure and velocity distributions are presented for the pipeline. The results show that:1) when the Reynolds number is less than 5.0×104, the flow coefficient of the elbow decreases rapidly with increasing Reynolds number; 2) when the Reynolds number is more than 7.0×104, the flow coefficient is nearly constant; 3) when the Reynolds number is in the range of 2.3×104 and 7.0×104, the flow coefficient ranges in 4.12~0.37. The pressure on the backside of the elbow is high, while the inside pressure is low. The velocity distribution is just the opposite with a low velocity near the backside of the elbow and higher velocities near the inside.
Key wordshilly irrigation systems    flow coefficient    Reynolds number    computational fluid dynamics
收稿日期: 2015-12-05      出版日期: 2016-04-15
ZTFLH:  TV134  
引用本文:   
刘家宏, 周晋军, 王浩, 吕宏兴. 山地灌溉管道水力特性的数值模拟[J]. 清华大学学报(自然科学版), 2016, 56(4): 387-393.
LIU Jiahong, ZHOU Jinjun, WANG Hao, LV Hongxing. Numerical simulation of the hydraulic characteristics of hilly irrigation systems. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 387-393.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.008  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I4/387
  图1 管段凸起部位管段网格划分图
  图2 弯头I、弯头II、弯头III、弯头IV 网格划分图
  图3 Re 与弯头局部阻力系数的对数相关关系
  图4 弯头Ⅰ、Ⅱ、Ⅲ、Ⅳ局部阻力系数与Re 关系
  图5 管段凸起部位管段静压分布图
  图6 弯头I、弯头II、弯头III、弯头IV 静压分布图
  图7 弯头I、弯头II、弯头III、弯头IV 速度矢量图
[1] 刘竹溪, 刘光临. 泵站水锤的防护措施及其简易计算(上)[J]. 农田水利与小水电, 1984, 59(5):32-37.LIU Zhuxi, LIU Guanglin. Pumping water hammer protection measures and simple calculation[J]. Irrigation and Water Conservancy and Hydropower, 1984, 59(5):32-37. (in Chinese)
[2] 索丽生. 锥管水击计算的特征线法[J]. 水力发电学报, 1997, 58(3):61-68.SUO Lisheng. Method of characteristics for computation of water hammer in conical tubes[J]. Journal of Hydroelectric Engineering, 1997, 58(3):61-68. (in Chinese)
[3] 杨玉思, 徐艳艳, 羡巨智. 长距离高扬程多起伏输水管道水锤防护的研究[J]. 给水排水, 2009, 45(4):108-111.YANG Yusi, XU Yanyan, XIAN Juzhi. Research on water hammer prevention in high-lift, hilly and long distance water transmission pipeline[J]. Water & Wastewater Engineering, 2009, 45(4):108-111. (in Chinese)
[4] 万五一. 长距离输水系统的非恒定流特性研究[D]. 天津:天津大学, 2004.WAN Wuyi. Study on Unsteady Flow in Long-Distance Water Diversion Projects[D]. Tianjin:Tianjin University, 2004. (in Chinese)
[5] 文俊, 刁明军, 李斌华, 等. 90°圆形弯管三维紊流是指模拟[J]. 四川水力发电, 2008, 27(2):111-113.WEN Jun, DIAO Mingjun, LI Binhua, et al. Numerical simulation on three-dimensional turbulent of 90° circular bends[J]. Sichuan Water Power, 2008, 27(2):111-113. (in Chinese)
[6] 陈江林, 吕宏兴, 石喜, 等. T型三通管水力特性的数值模拟与实验研究[J]. 农业工程学报, 2012, 28(5):73-77.CHEN Jianglin, LV Hongxing, SHI Xi, et al. Numerical simulation and experimental study on hydrodynamic characteristics of T-type[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):73-77. (in Chinese)
[7] 李文全, 杨祖欣, 游强强, 等. 井筒式潜水轴流泵出水管道水力特性数值模拟研究[J]. 水电能源科学, 2013, 31(1):150-153.LI Wenquan, YANG Zuxin, YOU Qiangqiang, et al. Numerical simulation of hydraulic characteristics of water outflow pipe of well-type submerged axial flow pump[J]. Water Resources and Power, 2013, 31(1):150-153. (in Chinese)
[8] 王梦婷, 李琳, 谭义海, 等. 正虹吸管道水力特性试验研究, [J]. 水电能源科学, 2014, 32(12):87-91.WANG Mengting, LI Lin, TAN Yihai, et al. Hydraulic model test research of new pressure regulating device for small and medium diversion type hydropower station[J]. Water Resources and Power, 2014, 32(12):87-91. (in Chinese)
[9] 严继松, 廖国玲. 有压管道充水过程水力特性三维数值模拟[J]. 水利水电技术, 2015, 46(3):110-114. YAN Jisong, LIAO Guoling. 3-D numerical simulation on hydraulic characteristics of water filling process of pressure pipeline[J]. Water Resources and Hydropower Engineering, 2015, 46(3):110-114. (in Chinese)
[10] 郑文玲, 张耀哲, 杨石磊, 等. 异形岔管水力特性的数值模拟[J]. 西北农林科技大学学报:自然科学版, 2014, 42(11):183-190.ZHENG Wenling, ZHANG Yaozhe, YANG Shilei, et al. Numerical simulation of hydraulic characteristics in heterotypic bifurcated pipe[J]. Journal of Northwest Agriculture and Forestry University:Natural Science Edition, 2014, 42(11):183-190. (in Chinese)
[11] 石喜. 灌溉管网非恒定流计算及应用研究[D]. 杨凌:西北农林科技大学, 2013.SHI Xi. Research on Caculation and Application of Unsteady Flow in Irrigation Network[D]. Yangling:Northwest Agriculture and Forestry University, 2013. (in Chinese)
[12] 周晋军, 吕宏兴, 朱德兰. 山地灌溉管道含气囊运动的水力特性研究[J]. 人民黄河, 2013, 35(12):101-103.ZHOU Jinjun, LV Hongxing, ZHU Delan. Research on hydraulic characteristics of mountainous irrigation pipe with air movement[J]. Yellow River, 2013, 35(12):101-103. (in Chinese)
[13] Strowger E B, Derr S L. Speed changes of hydraulic turbines for sudden changes of load[J]. Journal of Turbomachinery, 1926, 48:209-262.
[14] Wood F M. Discussion of speed changes of hydraulic turbines for sudden changes of load[J]. Journal of Turbomachinery, 1926, 48:56-68.
[15] Jayaraj K, Ganesan N, Padmanabhan C. A new finite element formulation based on the velocity of flow for water hammer problems[J]. International Journal of Pressure Vessels and Piping, 2005, 82:1-14.
[16] Afshar M H, Rohani M. Water hammer simulation by implicit method of characteristic[J]. International Journal of Pressure Vessels and Piping, 2008, 85:851-859
[17] Estrada C, Gonzalez C, Aliod R, et al. Improved pressurized pipe network hydraulic solver for applications in irrigation systems[J]. Journal of Irrigation and Drainage Engineering, 2009, 135:421-430.
[18] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004. WANG Fujun. Computational Fluid Dynamics Analysis——Software of CFD Principles and Applications[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[19] 吕宏兴, 裴国霞, 杨玲霞. 水力学[M]. 北京:中国农业出版社, 2002. LV Hongxing, PEI Guoxia, YANG Lingxia. Hydraulics[M]. Beijing:China Agriculture Press, 2002. (in Chinese)
[1] 钟强, 郑枫川, 杨宇晨, 邓兆宇. 明渠湍流对数律的诊断函数分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 999-1005.
[2] 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn