Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1009-1013    DOI: 10.16511/j.cnki.qhdxxb.2017.25.038
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于宽带信道状态信息的密钥生成策略
李涛1,2, 栾凤宇3, 周世东1,2
1. 清华大学 电子工程系, 微波与数字通信国家重点实验室, 北京 100084;
2. 清华大学 信息科学与技术国家实验室, 北京 100084;
3. 国家电网公司信息通信分公司, 北京 100761
Secret key generation strategy based on broadband channel state information
LI Tao1,2, LUAN Fengyu3, ZHOU Shidong1,2
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;
3. State Grid Information & Telecommunication Branch, Beijing 100761, China
全文: PDF(1100 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对于宽带通信系统,大量的频点信息可以作为随机源生成密钥,从而增强通信系统的安全性。然而环境中散射径的数目是有限的,导致不同频点存在着相关性。在限定总发送功率的条件下,针对不同频点的功率分配策略会对密钥的安全性能产生影响。该文以密钥生成速率作为密钥安全性的衡量,建立了功率分配模型以实现密钥生成速率的最大化,并利用Lagrange乘数法进行求解。为降低计算复杂度,提出了一种次优的功率分配方法,并与最优的序列二次规划(sequential quadratic programming,SQP)求解算法进行对比,数值结果表明:次优功率分配策略下得到的密钥安全性能非常接近通过SQP算法得到的最优功率分配策略的密钥安全性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
栾凤宇
周世东
关键词 密钥生成速率功率分配Lagrange乘数法次优算法序列二次规划(SQP)    
Abstract:The channel information for a large number of frequency points in broadband communication systems can be used as a random source to generate secret keys, thereby, enhancing system security. However, there is a limited number of multipaths in the scattering and there is a correlation between different frequency points. Thus, for the condition that the total transmission power is limited, the power allocation strategy for different frequency points will affect the secret key security. A power allocation model is given with the key generation rate as a measure of the security that maximizes the key generation rate. The model is solved with the Lagrange multiplier method. A suboptimal power allocation method is given to reduce the calculation complexity that compares with the optimal solution with the sequential quadratic programming (SQP) algorithm. Numerical tests show that the security with the suboptimal power allocation strategy is quite close to the security with the SQP algorithm which is considered to be the optimal strategy.
Key wordssecret key rate    power allocation    Lagrange multiplier method    suboptimal algorithm    sequential quadratic programming (SQP)
收稿日期: 2016-10-31      出版日期: 2017-10-15
ZTFLH:  TP929.5  
通讯作者: 周世东,教授,E-mail:zhousd@tsinghua.edu.cn     E-mail: zhousd@tsinghua.edu.cn
引用本文:   
李涛, 栾凤宇, 周世东. 基于宽带信道状态信息的密钥生成策略[J]. 清华大学学报(自然科学版), 2017, 57(10): 1009-1013.
LI Tao, LUAN Fengyu, ZHOU Shidong. Secret key generation strategy based on broadband channel state information. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1009-1013.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.038  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1009
  图1 系统模型
  图2 次优算法流程图
  图3 时延均匀分布情况下功率分配算法性能
  图4 时延指数分布情况下功率分配算法性能
[1] Shannon C E. Communication theory of secrecy systems[J]. Bell Syst Tech J, 1949, 28:656-715.
[2] Maurer U M. Secret key agreement by public discussion from common information[J]. IEEE Trans Inf Theory, 1993, 39(3):733-742.
[3] Koorapaty H, Hassan A A, Chennakeshu S. Secure information transmission for mobile radio[J]. IEEE Commun Lett, 2000, 4(2):52-55.
[4] YE Chunxuan, Reznik A, Sternberg G, et al. On the secrecy capabilities of ITU channels[C]//2007 IEEE 66th Vehicular Technology Conference. Baltimore, MD, USA:IEEE, 2007:2030-2034.
[5] Sayeed A, Perrig A. Secure wireless communications:Secret keys through 2008:3013-3016.
[6] YE Chunxuan, Reznik A, Shah Y. Extracting secrecy from jointly Gaussian random variables[C]//2006 IEEE International Symposium on Information Theory. Seattle, WA, USA:IEEE, 2006:2593-2597.
[7] Aono T, Higuchi K, Taromaru M, et al. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels[J]. IEEE Trans Antennas Propag, 2005, 53(11):3776-3784.
[8] CHEN Chan, Jensen M A. Secrecy extraction from increased randomness in a time-varying MIMO channel[C]//2009 IEEE Conference on Global Telecommunications. Honolulu, HI, USA:IEEE, 2009:1-6.
[9] Chen C, Jensen M A. Secret key establishment using temporally and spatially correlated wireless channel coefficients[J]. IEEE Trans Mobile Comput, 2011, 10(2):205-215.
[10] Wallace J W, Sharma R K. Automatic secret keys from reciprocal MIMO wireless channels:Measurement and analysis[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3):381-392.
[11] 栾凤宇, 肖立民, 张焱, 等. 基于散射簇特性的密钥生成安全性研究[J]. 电波科学学报, 2015, 30(4):629-634.LUAN Fengyu, XIAO Limin, ZHANG Yan, et al. Performance of the cluster properties-based secret key generation method[J]. Chinese Journal of Radio Science, 2015, 30(4):629-634. (in Chinese)
[12] Wallace J W, Chen C, Jensen M A. Key generation exploiting MIMO channel evolution:Algorithms and theoretical limits[C]//20093rd European Conference on Antennas and Propagation. Berlin, German:IEEE, 2009:1499-1503.
[13] Wallace J W. Secure physical layer key generation schemes:Performance and information theoretic limits[C]//2009 IEEE International Conference on Communications. Dresden, German:IEEE, 2009:1-5.
[14] WANG Qian, SU Hai, REN Kui, et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks[C]//IEEE International Conference on Computer Communications, 2011. Shanghai, China:IEEE, 2011:1422-1430.
[15] REN Kui, SU Hai, WANG Qian. Secret key generation exploiting channel characteristics in wireless communication[J]. IEEE Wireless Communications, 2011, 18(4):6-12.
[16] Deguchi K, Isaka M. Analysis of information reconciliation in secret key agreement from the AWGN channel[C]//2014 IEEE 79th Conference on Vehicular Technology. Seoul, Korea:IEEE, 2014:1-5.
[17] Bloch M, Barros J, Rodrigues M R D, et al. Wireless information theoretic security[J]. IEEE Trans Inf Theory, 2008, 54(6):2515-2534.
[18] Chou T H, Draper S C, Sayeed A M. Secret key generation from sparse wireless channels:Ergodic capacity and secrecy outage[J]. IEEE Journal on Selected Area in Communications, 2013, 31(9):1751-1764.
[19] 刘海涛, 黎滨洪, 谢勇, 等. 并行射线跟踪算法及其在城市电波预测的作用[J]. 电波科学学报, 2004, 19(5):581-585. LIU Haitao, LI Binhong, XIE Yong, et al. Parallel ray-tracing algorithm and its application for propagation prediction in urban microcellular environments[J]. Chinese Journal of Radio Science, 2004, 19(5):581-585. (in Chinese)
[20] Hammnmi A, Ghayoula R, Gharsallah A. Planar array antenna pattern nulling based on sequential quadratic programming (SQP) algorithm[C]//20118th International Multi-Conference on Systems Signals and Devices (SSD). Sousse, Tunisia:IEEE, 2011:1-7.
[21] Nemri N, Hammami A, Ghayoula R, et al. Implementation of a control system of intelligent antennas based on the sequential quadratic programming (SQP) algorithm[C]//The 8th European Conference of Antenna and Propagation (EuCAP 2014). Hague, Netherlands:IEEE, 2014:1797-1801.
[1] 周世东, 杨志, 肖立民. 基于用户位置变化的密钥生成速率[J]. 清华大学学报(自然科学版), 2017, 57(8): 862-866.
[2] 栾凤宇, 张焱, 郑繁繁, 许希斌, 周世东. 基于用户位置信息的密钥生成安全性[J]. 清华大学学报(自然科学版), 2015, 55(8): 831-837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn