Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1063-1069    DOI: 10.16511/j.cnki.qhdxxb.2017.25.046
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
新型灾害冻震震害分析及形成机理
周萌1,2, 樊健生1, 聂建国1
1. 清华大学 土木工程系, 土木工程安全与耐久重点实验室, 北京 100084;
2. 珠海市城乡规划编审与信息中心, 珠海 519000
Damage evaluation and seismological mechanism of frostquakes
ZHOU Meng1,2, FAN Jiansheng1, NIE Jianguo1
1. Key Laboratory of Structural Engineering and Vibration of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Zhuhai Urban Planning Verifying & Information Center, Zhuhai 519000, China
全文: PDF(2294 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 冻震是一类新型的自然灾害,其震感及震颤特征与一般构造型破坏性地震前兆现象相似,易造成人们的恐慌,也给工程设计人员带来担忧。目前国内外尚未提出相关数学模型描述冻震的形成机理、定量评估冻震震害水平,国内的相关报道甚至将冻震与冰震混淆。该文统计了已有的冻震记录,并基于能量假定估算了冻震可能达到的最大烈度及其地面峰值加速度(peak ground acceleration,PGA)。理论研究表明:冻震最大可能达到的修正Mercalli烈度(modified Mercalli intensity,MMI)为VI度,对应的地面峰值加速度低于典型构造型破坏性地震Elcentro-NS纪录的PGA的10%,冻震可能导致一般城镇钢筋混凝土建筑结构损伤开裂,但不会导致不可恢复性破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周萌
樊健生
聂建国
关键词 防灾减灾工程冻震地震修正Mercalli烈度 (MMI)    
Abstract:The frostquake is a new kind of natural hazard. It shares similar phenomena with the precursory events of large destructive earthquakes. This has caused wide panic of the damage that frostquakes may bring about, and hence placed increasing importance on damage evaluation for the frostquake. However, no scientific theory has been developed for mechanism explanation and quantitative damage evaluation of frostquakes in previous studies. An amount of Chinese reports even confound the frostquake with the icequake. In this paper, a series of available frostquake reports in the literature have been reviewed and discussed. Based on this review, the maximum intensity and highest peak ground acceleration (PGA) level of the frostquake is evaluated by adopting the elastic deformation assumption and conservation of energy assumption. The proposed theory predicts that the possibly maximum intensity of the frostquake is VI modified Mercalli intensity and its possibly highest PGA exhibits lower that 10 percent of that of earthquake elcentro-NS, which is a typical tectonic destructive earthquake. It is concluded that the frostquake effect may cause crack opening but no destructive damage in general reinforced concrete civil facilities.
Key wordsdisaster prevention and mitigation engineering    frostquake    earthquake    modified Mercalli intensity (MMI)
收稿日期: 2016-07-21      出版日期: 2017-10-15
ZTFLH:  TU081405  
通讯作者: 樊健生,教授,E-mail:fanjsh@tsinghua.edu.cn     E-mail: fanjsh@tsinghua.edu.cn
引用本文:   
周萌, 樊健生, 聂建国. 新型灾害冻震震害分析及形成机理[J]. 清华大学学报(自然科学版), 2017, 57(10): 1063-1069.
ZHOU Meng, FAN Jiansheng, NIE Jianguo. Damage evaluation and seismological mechanism of frostquakes. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1063-1069.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.046  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1063
  图1 2014年1月北美地区冻震
  图2 2014年1月多伦多冻震
  图3 1979年2月美国MassachusettsPepperell冻震
  表1 历史上被误录为地震的较强冻震列表
  表2 冻震的形成条件与震颤特征
  图4 (网络版彩图)冻震的形成
  图5 信号函数
  图6 简谐函数
  图7 复合函数
  表3 PGAGMMI相关关系公式
  图8 冻震最大烈度估计
  图9 (网络版彩图)冻震地震地面震动对比
[1] Lacroix A C A. A short note on cryoseisms[J]. Earthquake Notes, 1980, 51(1):15-20.
[2] Murphy L M, Cloud W K. United States Earthquakes[M]. Washington DC, USA:Coast and Geodetic Survey, 1954.
[3] Smith W E T. Earthquakes of Eastern Canada and Adjacent Areas:1535-1927[M]. Ottawa, Canada:Publications of the Dominion Observatory, Department of Mines and Technical Surveys, 1962.
[4] Coffman J L, von Hake C A. Earthquake History of the United States[M]. Washington DC, USA:U.S. Government Printing Office, U.S. Department of Commerce, 1973.
[5] Barosh P J. Frostquakes in New England[J]. Engineering Geology, 2000, 56(5):389-394.
[6] Burke K B S. Historical seismicity in the Central Highlands, Passamaquoddy Bay, and Moncton Regions of New Brunswick, Canada 1817-1961[J]. Seismological Research Letters, 2004, 75(4):419-431.
[7] Qamar A. Calving icebergs-A source of low-frequency seismic signals from Columbia Glacier, Alaska[J]. Journal of Geophysical Research-Solid Earth and Plants, 1988, 93(B6):6615-6623.
[8] Walter F, Clinton J F, Deichmann N, et al. Moment tensor inversions of icequakes on Gornergletscher, Switzerland[J]. Bulletin of the Seismological Society of America, 2009, 99(2A):852-870.
[9] Bassis J N, Fricker H A, Coleman R, et al. Seismicity and deformation associated with ice-shelf rift propagation[J]. Journal of Glaciology, 2007, 53(183):523-536.
[10] Menun C, Fu Q. An analytical model for near-fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U.S. National Conference on Earthquake Engineering. Oakland, USA:Earthquake Engineering Research Institute, 2002:1-10.
[11] Gutenberg B, Richter C F. Earthquake magnitude, intensity, energy and acceleration[J]. Bulletin of the Seismological Society of America, 1942, 32(1):163-191.
[12] Gutenberg B, Richter C F. Earthquake magnitude, intensity, energy and acceleration (second paper)[J]. Bulletin of the Seismological Society of America, 1956, 46(1):105-145.
[13] Hershberger J A. Comparison of earthquake accelerations with intensity ratings[J]. Bulletin of the Seismological Society of America, 1956, 46(2):317-320.
[14] Trifunac M D, Brady A G. On the correlation of seismic intensity scale with the peaks of recorded strong ground motion[J]. Bulletin of the Seismological Society of America, 1975, 65(1):139-162.
[15] Murphy J R, O'Brien L J. The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters[J]. Bulletin of the Seismological Society of America, 1977, 67(5):877-915.
[16] Sauter F, Shah H C. Estudio de Seguro Contra Terremoto[M]. San José, Costa Rica:Franz Sautery Asociados Ltda, 1978.
[17] Wald D J, Quintoriano V, Heaton T H, et al. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California[J]. Earthquake Spectra, 1999, 15(5):557-564.
[18] Linkimer L. Relationship between peak ground acceleration and modified Mercalli intensity in Costa Rica[J]. Revista Geológica de América Central, 2008, 38(1):81-94.
[19] GB 50011-2010. 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010. Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[1] 曹子龙, 黄杜若. 基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J]. 清华大学学报(自然科学版), 2022, 62(8): 1330-1340.
[2] 王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
[3] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[4] 杨剑锋, 展慧, 陈良超, 窦站. 考虑地震灾害的城市人员密集区域应急疏散路线规划[J]. 清华大学学报(自然科学版), 2022, 62(1): 70-76.
[5] 宋丹青, 黄进, 刘晓丽, 王恩志. 地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响[J]. 清华大学学报(自然科学版), 2021, 61(8): 873-880.
[6] 范乐, 王燕语, 张靖岩, 韦雅云. 基于安全韧性分析的地震应急救援实训功能设计策略[J]. 清华大学学报(自然科学版), 2020, 60(1): 9-17.
[7] 杨春宝, 张建民, 王睿. 海上风电吸力桶基础地震分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1207-1211.
[8] 李媛媛, 陈建国, 张小乐, 袁宏永. 基于建筑结构破坏的地震伤亡评估方法及应用[J]. 清华大学学报(自然科学版), 2015, 55(7): 803-807,814.
[9] 彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn