Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1070-1075    DOI: 10.16511/j.cnki.qhdxxb.2017.25.047
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
基于中国TIMES模型的碳排放达峰路径
马丁1,2,3, 陈文颖1,2
1. 清华大学 现代管理研究中心, 北京 100084;
2. 清华大学 能源环境经济研究所, 北京 100084;
3. 国网能源研究院, 北京 102209
China's carbon emissions peak path-based on China TIMES model
MA Ding1,2,3, CHEN Wenying1,2
1. Research Center for Contemporary Management, Tsinghua University, Beijing 100084, China;
2. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China;
3. State Grid Energy Research Institute, Beijing 102209, China
全文: PDF(1353 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文以中国能源系统优化模型(China TIMES)为基础,构建了碳排放达峰路径模型体系,分析了中国未来可能的碳排放峰值水平和达峰路径,综合评估了各部门及各项措施的碳减排贡献。结果表明:在参考情景下,中国的能源消费与碳排放在2010-2050年间将持续增长,对能源安全和应对气候变化带来严峻挑战;在达峰情景下,通过发展非化石能源和推广高耗能工业的节能减排技术,使得电力、工业和高耗能工业部门分阶段地实现碳排放达峰,进而实现2030年碳排放峰值达100亿~108亿t;电力和工业部门是碳减排的关键部门,二者在2030年的减排贡献分别达到75%和15%;发展非化石能源和提高高耗能工业的能效是碳减排的关键措施,二者在2030年的减排贡献分别达到65%和15%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马丁
陈文颖
关键词 气候变化能源系统模型碳排放达峰潜力分解    
Abstract:In this study, an integrated carbon emission peak path model system was built based on China TIMES model, and was used to analyze China's carbon emissions peak and peak path. The results show that China's carbon emissions will maintain rapid growth in the reference scenario between 2010-2050, and give enormous pressure on China's energy security and addressing climate change; in emission peak scenarios, through the development of non-fossil energy and the adoption of energy-conservation and emission-reduction measures, carbon-intensive sectors (power and industry sectors) can achieve early emissions peak and guarantee the overall carbon emissions peak between 10.0-10.8 billion t; power sector and energy-intensive sectors are the main carbon mitigation sectors, the contribution of carbon mitigation are 75% and 15%, respectively. In addition, adopting non-fossil energy and the energy-efficient technologies are main carbon mitigation measures, and the contribution of carbon mitigation are 65% and 15%, respectively.
Key wordsclimate change    energy system model    carbon emission peak    emission reduction potential decomposition
收稿日期: 2015-12-01      出版日期: 2017-10-15
ZTFLH:  F407.2  
通讯作者: 陈文颖,研究员,E-mail:Chenwy@tsinghua.edu.cn     E-mail: Chenwy@tsinghua.edu.cn
引用本文:   
马丁, 陈文颖. 基于中国TIMES模型的碳排放达峰路径[J]. 清华大学学报(自然科学版), 2017, 57(10): 1070-1075.
MA Ding, CHEN Wenying. China's carbon emissions peak path-based on China TIMES model. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1070-1075.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.047  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1070
  图1 碳排放达峰路径模型体系
  表1 不同达峰情景下的碳税设定
  图2 终端能源消费及分部门构成
  图3 参考情景下CO2排放及部门构成
  图4 终端能源消费及分部门构成
  图5 达峰情景下的CO排放及部门构成
  图6 PS1情景下CO减排及分部门潜力
  图7 PS1情景下CO减排及分措施贡献
[1] 何建坤. CO2排放峰值分析:中国的减排目标与对策[J]. 中国人口·资源与环境, 2013,23(12):1-9. HE Jiankun. Analysis of CO<sub>2</sub> emission peak:China's objective and strategy[J].China Population, Resources and Environment, 2013,23(12):1-9. (in Chinese)
[2] 郭朝先. 中国工业减排潜力估算[J]. 中国人口·资源与环境, 2014,24(9):13-20. GUO Chaoxian. Estimation of industrial carbon emission reduction potential in China[J].China Population, Resources and Environment, 2014,24(9):13-20. (in Chinese)
[3] 刘宇, 蔡松峰, 张其仔. 2025年、2030年和2040年中国二氧化碳排放达峰的经济影响——基于动态GTAP-E模型[J]. 管理评论, 2014,26(12):3-9. LIU Yu, CAI Songfeng, ZHANG Qizi. The economic impact of China's carbon dioxide emissions to peak in 2025, 2030 and 2040——Based on the dynamic GTAP-E Model[J].Management Review, 2014,26(12):3-9. (in Chinese)
[4] Yin X, Chen W. Trends and development of steel demand in China:A bottom-up analysis[J].Resources Policy, 2013,38(4):407-415.
[5] 任忠宝, 王世虎, 唐宇, 等. 矿产资源需求拐点理论与峰值预测[J]. 自然资源学报, 2012,27(9):1480-1489. REN Zhongbao, WANG Shihu, TANG Yu, et al. The inflection point theory of mineral resources demand and peak forecast[J].Journal of Natural Resources, 2012,27(9):1480-1489. (in Chinese)
[6] Yin X, Chen W, Eom J, et al. China's transportation energy consumption and CO2 emissions from a global perspective[J].Energy Policy, 2015,82:233-248.
[7] Chen W, Yin X, Zhang H, et al. The Role of Energy Service Demand in Carbon Mitigation:Combining Sector Analysis and China TIMES-ED Modelling[M]. Ireland:Springer International Publishing, 2015.
[8] International Energy Agency. Energy Technology Systems Analysis Programme. Documentation for the TIMES Model[R/OL].[2005-04-01]. http://www.iea-etsap.org/web/Docs/TIMESDoc-Intro.pdf.
[9] Chen W, Yin X, Ma D. A bottom-up analysis of China's iron and steel industrial energy consumption and CO2 emissions[J].Applied Energy, 2014,136:1174-1183.
[10] Ang B, Zhang F. A survey of index decomposition analysis in energy and environmental studies[J].Energy, 2000, 25(12):1149-1176.
[11] Kesicki F. Marginal abatement cost curves:Combining energy system modelling and decomposition analysis[J].Environmental Modeling & Assessment, 2013,18(1):27-37.
[1] 杨文静, 赵建世, 赵勇, 王庆明. 基于结构方程模型的蒸散发归因分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 581-588.
[2] 陈毅, 吴保生, 李敏慧. 气候变化下的黄河源区化学风化[J]. 清华大学学报(自然科学版), 2022, 62(12): 1945-1952.
[3] 王利宁, 陈文颖. 不同分配方案下各国碳排放额及公平性评价[J]. 清华大学学报(自然科学版), 2015, 55(6): 672-677,683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn