Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1114-1120    DOI: 10.16511/j.cnki.qhdxxb.2017.25.054
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
商用高温气冷堆氦气透平循环发电热力学参数分析和优化
曲新鹤, 杨小勇, 王捷
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Thermodynamic analysis and optimization of helium turbine cycle of commercial high temperature gas-cooled reactor
QU Xinhe, YANG Xiaoyong, WANG Jie
Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing, 100084, China
全文: PDF(1251 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着反应堆出口温度的提高,高效的动力转换技术已经成为(超)高温气冷堆的一个趋势。该文在HTR-10、HTR-10GT和HTR-PM研究的基础上,针对更高的堆芯出口温度,对高温气冷堆氦气透平循环的热力学参数进行分析、优化和设计。通过建立高温气冷堆的数学模型和优化模型,结合更符合工程经验的约束条件,确定了高温气冷堆氦气透平循环的2个设计工况点:1)接近目前工程经验的工况点,堆芯出口温度为850℃,继承HTR-10GT氦气压气机和透平的设计经验,循环压比为2.47,循环效率为47.60%;2)略带前瞻性的工况点,堆芯出口温度为900℃,堆芯入口温度为550℃,压气机压比为2.75,此时循环效率为48.92%。该文还基于这2个工况点对高温气冷堆氦气透平循环参数进行设计,将会对未来开发高温气冷堆闭式Brayton循环提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曲新鹤
杨小勇
王捷
关键词 高温气冷堆闭式Brayton循环氦气透平    
Abstract:With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactor. Based on the HTR-10, HTR-10GT and HTR-PM, aiming at a higher reactor outlet temperature (ROT), the paper analyzes, optimizes and designs the thermodynamic parameters of the helium turbine cycle of high temperature gas-cooled reactor. Two proposed operating points are determined by the optimization model combined with the constrints of engineering experience. One of these working points is close to the current engineering experiences, inherited the design experience of the helium compressor and turbine of the HTR-10GT. Its ROT is 850℃, the cycle pressure ratio is 2.47, and the cycle efficiency is 47.60%. Another working point is slightly forward-looking. Its ROT is 900℃, the reactor inlet temperature is 550℃, the cycle pressure ratio is 2.75, and the cycle efficiency is 48.92%. And based on these two working points the HTGR helium cycle parameters have been designed. It would be helpful to develop a closed Brayton cycle coupled with a high temperature reactor in the future.
Key wordshigh temperature gas-cooled reactor (HTGR)    closed Brayton cycle    helium turbine
收稿日期: 2016-04-26      出版日期: 2017-10-15
ZTFLH:  TL424  
  TK479.12  
通讯作者: 王捷,研究员,E-mail:wjinet@tsinghua.edu.cn     E-mail: wjinet@tsinghua.edu.cn
引用本文:   
曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
QU Xinhe, YANG Xiaoyong, WANG Jie. Thermodynamic analysis and optimization of helium turbine cycle of commercial high temperature gas-cooled reactor. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1114-1120.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.054  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1114
  表1 高温气冷堆氦气透平循环项目主要参数
  图1 闭式Brayton循环温熵图
  图2 高温气冷堆氦气透平直接循环流程图
  表2 部件效率和总压力损失率
  图3 压气机压比与循环效率的关系
  图4 回热度与循环效率压气机压比的关系
  图5 压气机压比与堆芯入口温度的关系
  图6 不同回热度时压气机压比与堆芯入口温度的关系
  图7 优化分析
  表3 循环基本参数设计
  表4 循环节点参数
[1] 丁铭. 高温气冷堆闭式布雷登循环动态特性和控制方法研究[D]. 北京:清华大学, 2009.DING Ming. Study on Dynamic Characteristics and Control Methods of HTGR Brayton[D]. Beijing:Tsinghua University, 2009.(in Chinese)
[2] Fujikawa S, Hayashi H, Nakazawa T, et al. Achievement of reactor-outlet coolant temperature of 950℃ in HTTR[J]. Journal of Nuclear Science and Technology, 2004, 41(12):1245-1254.
[3] WU Zongxin, LIN Dengcai, ZHONG Daxin. The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218(1):25-32.
[4] ZHANG Zuoyi, WU Zongxin, WANG Dazhong, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239(7):1212-1219.
[5] Baxi C B, Shenoy A, Kostin V I, et al. Evaluation of alternate power conversion unit designs for the GT-MHR[J]. Nuclear Engineering and Design, 2008, 238(11):2995-3001.
[6] Yan X, Kunitomi K, Nakata T, et al. GTHTR300 design and development[J]. Nuclear Engineering and Design, 2003, 222(2-3):247-262.
[7] Yan X, Takizuka T, Takada S, et al. Cost and performance design approach for GTHTR300 power conversion system[J]. Nuclear Engineering and Design, 2003, 226(3):351-373.
[8] Kumar K P, Tourlidakis A, Pilidis P. Performance Review:PBMR Closed Cycle Gas Turbine Power Plant[R]. Palo Alto, USA:IAEA-TECDOC-1238, 2004.
[9] McDonald C F. Power conversion system considerations for a high efficiency small modular nuclear gas turbine combined cycle power plant concept (NGTCC)[J]. Applied Thermal Engineering, 2004, 73(1):82-103.
[10] McDonald C F. Power conversion system consideration for an advanced nuclear gas turbine (GT-VHTR) CHHP demonstration plant concept[J]. International Journal of Turbo and Jet Engines, 2010, 27(3):179-217.
[11] 佐藤豪. 燃气轮机理论[M]. 王仁, 译. 北京:机械工业出版社, 1983.SATO Hiroshi. Theory of Gas Turbine[M]. WANG Ren, Trans. Beijing:China Machine Press, 1983. (in Chinese)
[12] 顾义华. 高温气冷堆气体透平循环及透平压气机基本特性研究[D]. 北京:清华大学, 2003.GU Yihua. Fundamental Study on HTGR Gas Turbine Cycle and Associated Turbocompressor[D]. Beijing:Tsinghua University, 2003. (in Chinese)
[13] 王捷. 高温气冷堆氦气透平循环热工特性的初步研究[J]. 高技术通讯, 2002, 12(9):91-95.WANG Jie. Preliminary study on thermal features for high temperature gas-cooled reactor gas turbine cycle[J]. Chinese High Technology Letters, 2002, 12(9):91-95. (in Chinese)
[14] Jakobeit W, Pfeifer J P, Ullrich G. Evaluation of high-temperature alloys for helium gas turbines[J]. Nuclear Technology, 1984, 66(1):195-206.
[15] Michel D J, Serpan C Z, Smith H H, et al. Effect of helium on the fatigue behavior of the molybdenum-base alloy TZM at 900℃[J]. Nuclear Technology, 1974, 22(1):79-87.
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[4] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[5] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[6] 马文魁, 叶萍, 曲新鹤, 杨小勇. 空间堆Brayton系统旁路阀功率快速调节特性[J]. 清华大学学报(自然科学版), 2023, 63(8): 1282-1290.
[7] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[8] 马文魁, 杨小勇, 王捷. 空间堆闭式Brayton循环回热器传热-阻力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(10): 1660-1667.
[9] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[10] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[11] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[12] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[13] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[14] 杨谢, 石磊. 空间核反应堆电源闭式Brayton循环热力学分析[J]. 清华大学学报(自然科学版), 2018, 58(9): 821-826.
[15] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn