Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (5): 465-470    DOI: 10.16511/j.cnki.qhdxxb.2017.22.022
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
2219-T8铝合金搅拌摩擦焊接头在酸性介质中的腐蚀行为
康举1,2, 梁苏莹3, 吴爱萍1, 王国庆4
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084;
2. 华北电力科学研究院有限责任公司, 国网冀北电力有限公司电力科学研究院, 北京 100045;
3. 首钢工学院, 北京 100144;
4. 中国运载火箭技术研究院, 北京 100076
Corrosion of friction stir welded joints of the 2219-T8 Al alloy in acidic solutions
KANG Ju1,2, LIANG Suying3, WU Aiping1, WANG Guoqing4
1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. State Grid Jibei Electric Power Co. Ltd. Research Institute, North China Electric Power Research Institute Co., Ltd., Beijing 100045, China;
3. Shougang Institute of Technology, Beijing 100144, China;
4. China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(1963 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 2219铝合金可作为火箭燃料贮箱的主要结构材料,搅拌摩擦焊是其理想的焊接方法之一。目前对2219铝合金搅拌摩擦焊接头在酸性介质中的腐蚀问题鲜有报道。该文采用极化曲线和浸泡腐蚀实验对2219-T8铝合金搅拌摩擦焊接头在0.5 mol/L NaCl溶液(pH 2)中的腐蚀行为进行了研究,并通过光学轮廓仪分析了腐蚀形貌、腐蚀深度和密度。结果表明:与母材相比,热影响区的腐蚀行为出现了分化,远缝区耐蚀性能下降,而近缝区耐蚀性能提高;热机械影响区和焊核区的耐蚀性能提高。由于母材和热影响区远缝区的腐蚀电位更负,对接头其他区域起到了阴极保护作用。与中性介质相比,酸性介质中主要的阴极反应为析氢反应,降低了接头各区的腐蚀电位和点蚀电位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康举
梁苏莹
吴爱萍
王国庆
关键词 酸性介质腐蚀行为2219铝合金搅拌摩擦焊热影响区    
Abstract:Al alloy (AA) 2219 has potential for use in liquid cryogenic rocket fuel tanks, with friction stir welding (FSW) as a suitable welding method. However, there is limited data on the corrosion of FSW AA2219-T8 joints in acidic solutions. Therefore, the corrosion of an FSW AA2219-T8 joint in an acidic chloride solution (pH 2, 0.5 mol/L NaCl) was characterized using potentiodynamic polarization and corrosion immersion tests. An optical profilometer was used to analyze the corrosion morphology, depth and density of the corroded cross-section surface and identify the corrosion mechanism. The results show that the corrosion resistance differs throughout the whole heat-affected zone (HAZ) with the worst corrosion region far from the welding seam. The corrosion resistance significantly increases in the thermomechanically affected zone (TMAZ) and the weld nugget zone (WNZ). The WNZ, TMAZ and near seam regions of HAZ are less affected because they are cathodes to other regions and are protected from corrosion. Unlike in neutral solutions, the primary reduction reaction is hydrogen evolution, which reduces the corrosion potential and pitting potential in each region.
Key wordsacidic solution    corrosion    2219 Al alloy    friction stir welding    heat-affected zone
收稿日期: 2016-08-10      出版日期: 2017-05-15
ZTFLH:  TG172.6  
通讯作者: 吴爱萍,教授,E-mail:wuaip@tsinghua.edu.cn     E-mail: wuaip@tsinghua.edu.cn
引用本文:   
康举, 梁苏莹, 吴爱萍, 王国庆. 2219-T8铝合金搅拌摩擦焊接头在酸性介质中的腐蚀行为[J]. 清华大学学报(自然科学版), 2017, 57(5): 465-470.
KANG Ju, LIANG Suying, WU Aiping, WANG Guoqing. Corrosion of friction stir welded joints of the 2219-T8 Al alloy in acidic solutions. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 465-470.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.022  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/465
  图1 电化学测试试样在接头中的取样位置(单位:mm)
  图2 2219GT8铝合金FSW 接头横截面不同区域在0.5mol/LNaCl溶液(pH2)中的电化学性能
  图3 接头横截面在酸性介质中浸泡14d后的腐蚀形貌
  图4 接头各区域腐蚀行为定量分析
  表1 接头各区基体中固溶Cu的质量分数[6]
  图5 BM 和WNZ中组分粒子(主要为θ 相)长度统计
  图6 2219GT8铝合金FSW 接头WNZ分别在pH2和 pH7、0.5mol/LNaCl溶液中的阴极极化曲线
[1] Huang C, Kou S. Partially melted zone in aluminum welds-liquation mechanism and directional solidification [J]. Welding Journal, 2000, 79(5): S113-S120.
[2] 刘春飞. 新一代运载火箭箱体材料的选择 [J]. 航空制造技术, 2003(2): 22-27.LIU Chunfei. Material selection for new-type launch vehicle tank. [J]. Aeronautical Manufacturing Technology, 2003(2): 22-27.(in Chinese)
[3] 李权. 2219铝合金熔化焊接头力学性能薄弱区研究 [D]. 北京: 清华大学, 2015.LI Quan. Investigation on the Weakness Region of the Fusion Welded Joints of 2219 Aluminum Alloy [D]. Beijing: Tsinghua University, 2015.(in Chinese)
[4] Malarvizhi S, Balasubramanian V. Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminum alloy [J]. Materials and Design, 2011, 32(3): 1205-1214.
[5] Chen Y C, Liu H J, Feng J C. Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates [J]. Materials Science and Engineering A, 2006, 420(1/2): 21-25.
[6] Kang J, Feng Z, Frankel G S, et al. Effect of precipitate evolution on the pitting corrosion of friction stir welded joints of an Al-Cu alloy [J]. Corrosion, 2016, 72(6): 719-731.
[7] Xu W F, Liu J H, Zhu H Q. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution [J]. Electrochimica Acta, 2010, 55(8): 2918-2923.
[8] 康举, 李吉超, 冯志操, 等. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究 [J]. 金属学报, 2016, 52(1): 60-70.KANG Ju, LI Jichao, FENG Zhicao, et al. Investigation on mechanical and stress corrosion cracking properties of weakness zone in friction stir welded 2219-T8 Al alloy [J]. Acta Metallurgica Sinica, 2016, 52(1): 60-70.(in Chinese)
[9] 张华, 张贺, 孙大同, 等. 2219铝合金母材及搅拌摩擦焊接头应力腐蚀敏感性 [J]. 焊接学报, 2014, 35(12): 7-10.ZHANG Hua, ZHANG He, SUN Datong, et al. Stress corrosion cracking susceptibility of 2219 aluminium alloy parent metal and its friction stir weldment [J]. Transactions of the China Welding Institution, 2014, 35(12): 7-10.(in Chinese)
[10] Srinivasan P B, Arora K S, Dietzel W, et al. Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir weldment [J]. Journal of Alloys and Compounds, 2010, 492(1/2): 631-637.
[11] Hu W, Meletis E I. Corrosion and environment-assisted cracking behavior of friction stir welded Al 2195 and Al 2219 alloys [J]. Materials Science Forum, 2000, 331-337: 1683-1688.
[12] Paglia C S, Buchheit R G. Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87 [J]. Materials Science and Engineering A, 2006, 429(1/2): 107-114.
[13] Surekha K, Murty B S, Rao K P. Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy [J]. Surface & Coatings Technology, 2008, 202(17): 4057-4068.
[14] 朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989.ZHU Rizhang. Metallic Corrosion Science [M]. Beijing: Metallurgical Industry Press, 1989.(in Chinese)
[15] Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminum alloy [J]. Corrosion Science, 2010, 52(2): 620-626.
[16] Kang J, Feng Z, Li J, et al. Friction stir welding of Al alloy 2219-T8, Part Ⅱ: Mechanical and corrosion properties [J]. Metallurgical and Materials Transactions A, 2016, 47(9): 4566-4577.
[17] Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys: An experimental survey and discussion [J]. Journal of the Electrochemical Society, 2005, 152(4): B140-B151.
[18] Scully J R, Knight T O, Buchheit R G. Electrochemical characteristics of the Al<sub>2</sub>Cu, Al<sub>3</sub>Ta and Al<sub>3</sub>Zr intermetallic phases and their relevancy to the localized corrosion of Al alloys [J]. Corrosion Science, 1993, 35(1-4): 185-195.
[19] Vukmirovic M B, Dimitrov N, Sieradzki K. Dealloying and corrosion of Al alloy 2024 T-3 [J]. Journal of the Electrochemical Society. 2002, 149(9): B428-B439.
[20] Vergara S G, Colin F, Skeldon P, et al. Effect of copper enrichment on the electrochemical potential of binary Al-Cu alloys [J]. Journal of the Electrochemical Society, 2004, 151(1): B16-B21.
[21] Ramgopal T, Frankel G S. Role of alloying additions on the dissolution kinetics of aluminum binary alloys using artificial crevice electrodes [J]. Corrosion, 2001, 57(8): 702-711.
[22] Frankel G S, Xia Z. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454 [J]. Corrosion, 1999, 55(2): 139-150.
[23] Kang J, Feng Z, Frankel G S, et al. Friction stir welding of Al alloy 2219-T8, Part I: Evolution of precipitates and formation of abnormal Al<sub>2</sub>Cu agglomerates [J]. Metallurgical and Materials Transactions A, 2016, 47(9): 4553-4565.
[24] Cao G, Kou S. Friction stir welding of 2219 aluminum: Behavior of θ (Al<sub>2</sub>Cu) particles [J]. Welding Journal, 2005, 84(1): S1-S8.
[25] Frankel G S. The growth of 2-D pits in thin film aluminum [J]. Corrosion Science, 1990, 30(12): 1203-1218.
[1] 杨智勇, 李武鹏, 张宇, 李志强, 李卫京. 搅拌头结构对搅拌摩擦焊缺陷形成机制的影响[J]. 清华大学学报(自然科学版), 2022, 62(2): 374-384.
[2] 李艳军, 吴爱萍, 刘德博, 赵海燕, 赵玥, 王国庆. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn