Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (7): 687-694    DOI: 10.16511/j.cnki.qhdxxb.2017.25.023
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
无线Mesh网络恶意节点检测模型
杨宏宇, 李航
中国民航大学 计算机科学与技术学院, 天津 300300
Malicious node detection model for wireless Mesh networks
YANG Hongyu, LI Hang
School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(1363 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对现有恶意节点检测方法对无线Mesh网络恶意节点检测效率低的问题,该文提出一种基于移动Ad-hoc网络更优方案(better approach to mobile Ad-hoc networking,BATMAN)路由协议的恶意节点检测模型(malicious node detection model based on BATMAN,MNDMB)。在无线Mesh网络中使用BATMAN路由协议,在网络节点上安装源节点消息解析模块,根据解析模块生成的参数和相应阈值的比较判断出可疑节点,通过一致性投票机制计算出可疑节点置信值作为恶意节点判定的标准。仿真验证结果表明:与现有方法相比,MNDMB在无线Mesh网络中具有较高的恶意节点检测率和较低的误报率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨宏宇
李航
关键词 无线Mesh网络网络拓扑恶意行为投票置信值    
Abstract:Existing malicious node detection methods for wireless Mesh networks are not very efficient. This paper presents a malicious node detection method based on the mobile Ad-hoc networking (BATMAN) route protocol (MNDMB). The BATMAN route protocol is loaded into a wireless Mesh network in a source node message analysis module to generate the defection parameters and identify suspicious nodes depending on these parameters by comparisons to thresholds. Then, a multi-node voting mechanism is used to calculate the confidence value which is used as the criterion for judging the malicious node. Verification tests show that this protocol has higher detection rates and lower false positive rates in wireless Mesh networks than existing methods.
Key wordswireless Mesh network    network topology    malicious behavior    vote    confidence value
收稿日期: 2016-12-07      出版日期: 2017-07-15
ZTFLH:  TP393  
引用本文:   
杨宏宇, 李航. 无线Mesh网络恶意节点检测模型[J]. 清华大学学报(自然科学版), 2017, 57(7): 687-694.
YANG Hongyu, LI Hang. Malicious node detection model for wireless Mesh networks. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 687-694.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.023  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I7/687
  图1 MNDMB模型结构
  图2 OGM 结构图
  图3 OGM 解析模块处理流程
  图4 恶意节点判定模块处理流程
  图5 改进的K/N 投票算法
  表1 其他仿真参数设置
  图6 NS2平台网络布局
  图7 不同采样周期的恶意节点检测效果
  图8 3种方法的恶意节点检测效果
[1] 吴文甲, 杨明, 罗军舟. 无线Mesh网络中满足带宽需求的路由器部署方法 [J]. 计算机学报, 2014, 37(2): 344-355.WU Wenjia, YANG Ming, LUO Junzhou. A bandwidth-aware router placement scheme for wireless Mesh networks [J]. Chinese Journal of Computers, 2014, 37(2): 344-355. (in Chinese)
[2] Banerjee U, Arya K, Gupta G, et al. Performance evaluation of an ant colony based routing algorithm in the presence of a misbehaving node [C]//Proceedings of the International Conference on Security of Internet of Things. New York, NY, USA: ACM, 2012: 227-233.
[3] Priyanka J, Tephillah S, Balamurugan A. Malicious node detection using minimal event cycle computation method in wireless sensor networks [C]//Proceedings of the International Conference on Communications and Signal Processing. Piscataway, NJ, USA: IEEE, 2014: 905-909.
[4] 张华鹏, 张宏斌, 葛娟, 等. Ad-hoc网络中基于信用的自私节点检测系统 [J]. 计算机工程, 2013, 39(6): 119-123.ZHANG Huapeng, ZHANG Hongbin, GE Juan, et al. Selfish node detection system based on credit in Ad-hoc network [J]. Computer Engineering, 2013, 39(6): 119-123. (in Chinese)
[5] 陈波, 毛剑琳, 郭宁, 等. 基于K-means算法的无线传感器网络节点自私行为检测方法 [J]. 系统仿真学报, 2014, 26(3): 580-585.CHEN Bo, MAO Jianlin, GUO Ning, et al. Detection method for nodes selfish behavior of wireless sensor networks based on K-means algorithm [J]. Journal of System Simulation, 2014, 26(3): 580-585. (in Chinese)
[6] 任智, 谭永银, 李季碧, 等. 可靠的机会网络自私节点检测算法 [J]. 通信学报, 2016, 37(3): 1-6.REN Zhi, TAN Yongyin, LI Jibi, et al. Reliable selfish node detection algorithm for opportunistic networks [J]. Journal on Communications, 2016, 37(3): 1-6. (in Chinese)
[7] Liu Z, Dai J, Sheng Y, et al. A high-performance wireless Mesh network routing protocol [J]. Applied Mechanics & Materials, 2014, 513-517: 1705-1708.
[8] Gupta S, Goel R. A graphical user interface framework for detecting intrusions using Bro IDS [J]. International Journal of Computer Applications, 2012, 55(13): 7-12.
[9] Orosz P, Skopko T, Imrek J. Performance evaluation of the nano second resolution time stamping feature of the enhanced libpcap [C]//Proceedings of the Sixth International Conference on Systems and Networks Communications. Barcelona, Spain: ICSNC, 2011: 220-225.
[10] 陈佩剑. 基于信任度量机制的入侵检测系统研究与实现 [D]. 长沙:国防科技大学, 2011.CHEN Peijian. The Study and Implementation of Honesty-rate Measurement Based on Intrusion Detection System [D]. Changsha: National University of Defense Technology, 2011. (in Chinese)
[11] Lakshmi K, Reddy C. Efficient classifier generation over stream sliding window using associative classification approach [J]. International Journal of Computer Applications, 2015, 115(22): 1-9.
[12] Tang H, Tang T, Zhang P. An adaptive Mesh redistribution method for nonlinear Hamilton-Jacobi equations in two-and three-dimensions [J]. Journal of Computational Physics, 2015, 188(2): 543-572.
[1] 李其奋, 王旸旸, 李冠宇, 王瑞浩, 徐明伟. 基于多台可编程交换机的网络拓扑仿真与性能评估[J]. 清华大学学报(自然科学版), 2024, 64(4): 659-667.
[2] 郭少茹, 张虎, 钱揖丽, 李茹, 杨陟卓, 顾兆军, 马淑晖. 面向高考阅读理解的句子语义相关度[J]. 清华大学学报(自然科学版), 2017, 57(6): 575-579,585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn