Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (7): 753-762    DOI: 10.16511/j.cnki.qhdxxb.2017.25.033
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
轴向变密度铝泡沫件的动态和静态压缩实验与有限元模拟分析
吕振华, 孙靖譞
清华大学 汽车工程系, 北京 100084
Dynamic and static compression tests and FEA analyses of aluminum foam specimen with variable density in the loading direction
LÜ Zhenhua, SUN Jingxuan
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3647 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对工程中常见的厚度方向变密度的闭孔铝泡沫材料,该文通过动态和静态压缩实验与模拟分析,探讨了大尺度变密度铝泡沫部件变形与吸能特性分析的有限元模型构建方法。对变密度铝泡沫大试样的准静态压缩和冲击压缩实验研究表明:厚度方向变密度铝泡沫材料的压缩过程呈现从低密度层开始的逐层屈服变形伴随整体变形的特性,与密度均匀的铝泡沫材料的变形特性显著不同。该文建立了变密度铝泡沫大试样的分层变密度变尺度有限元模型和近似的密度和尺度均匀的有限元模型,计算结果对比分析表明:分层变密度变尺度有限元模型能够模拟实际材料的逐层屈服变形特性,计算的试样准静态和冲击压缩变形与吸能特性等与实验结果相符;而基于均匀模型的计算结果则不能模拟逐层变形特性,与实验结果及理论特性明显不相符。分层变密度变尺度有限元模型的单元尺度会影响逐层屈服变形特性模拟结果,基于单元尺度接近实际铝泡沫材料胞元尺度的分层有限元模型的计算结果与实验结果一致性较好。这些研究结果对各种结构的铝泡沫材料应用研究具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 变密度铝泡沫材料冲击压缩力学特性分层变密度变尺度有限元模型逐层变形与吸能特性    
Abstract:Closed-cell aluminum foams with variable densities in the loading direction are widely used. A finite-element mode (FEM) is used to model the foam deformation and energy absorption characteristics with dynamic and quasi-static compression tests. The results show that large aluminum foam specimens with variable densities have density-dependent layered deformation characteristics, which differ from uniform-density aluminum foams. Predictions of an FEM model with a layered variable density and layered element sizes are compared with those of a conventional FEA model with uniform density and element size. The computation results show that the layered gradual deformation characteristics can be simulated by the layered models with quasi-static and dynamic compression simulation results agreeing well with experimental data. The uniform model cannot accurately predict the layered gradual deformation characteristics. The element size of the layered models influences the simulated layered gradual deformation characteristics with simulation results using the layered model with element sizes equal to the foam cell diameter agreeing best with the experimental data. These results will improve engineering designs using aluminum foam materials.
Key wordsaluminum foam with variable density    dynamic compressional mechanical characteristics    FE model with layered variable density and element size    layered gradual deformation and energy absorption characteristics
收稿日期: 2016-07-23      出版日期: 2017-07-15
ZTFLH:  O347.3  
引用本文:   
吕振华, 孙靖譞. 轴向变密度铝泡沫件的动态和静态压缩实验与有限元模拟分析[J]. 清华大学学报(自然科学版), 2017, 57(7): 753-762.
LÜ Zhenhua, SUN Jingxuan. Dynamic and static compression tests and FEA analyses of aluminum foam specimen with variable density in the loading direction. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 753-762.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.033  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I7/753
  图1 轴向变密度铝泡沫大尺寸圆柱试样
  图2 变密度铝泡沫大试样的冲击压缩实验系统示意图
  图3 铝泡沫小试样、大试样的压缩实验过程
  图4 铝泡沫小试样、大试样的压缩实验曲线结果
  图5 大尺寸试样的3种分层尺度不同的分层有限元模型
  图6 对铝泡沫小试样压缩应力应变曲线的拓展
  图7 4种模型的准静态压缩变形计算与实验结果
  图8 4种模型的准静态压缩平均载荷变形曲线与实验结果对比
  图9 准静态压缩整体轴向变形能密度曲线及分段变形能曲线
  图10 4种模型的冲击压缩变形过程与实验结果比较
  图11 分段局部相对变形时间历程计算结果与实验结果对比
  图12 4种模型的冲击压缩平均载荷时间历程与实验结果对比
  图13 4种模型的冲击压缩分段变形能时间历程曲线
  图14 分层有限元模型不同径向位置、不同时刻的轴向应变率
[1] Gibson L, Ashby M. Cellular Solids: Structure and Properties [M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1997.
[2] Giorgi M, Carofalo A, Dattoma V, et al. Aluminum foams structural modelling [J]. Computers and Structures, 2010, 88: 25-35.
[3] 胡永乐, 王峰超, 胡时胜. 泡沫铝经验型动态本构模型及其在LS-DYNA中的实现 [J]. 兵工学报, 2014, 35(增刊2):46-50.HU Yongle, WANG Fengchao, HU Shisheng. An empirical dynamic constitutive model for aluminum foams and its implementation in LS-DYNA [J]. Acta Armamentarii, 2014, 35 (Suppl. 2): 46-50. (in Chinese)
[4] Reyes A, Hopperstad O, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density [J]. European Journal of Mechanics A/Solids, 2003, 22: 815-835.
[5] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3):278-284.ZHANG Jian, ZHAO Guiping, LU Tianjian. High speed compression behavior of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278-284. (in Chinese)
[6] Beals J, Thompson M. Density gradient effects on aluminum foam compression behavior [J]. Journal of Materials Science, 1997, 32: 3595-3600.
[7] Deshpande V, Fleck N. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 1253-1283.
[8] Deshpande V, Fleck N. High strain rate compressive behavior of aluminum alloy foams [J]. International Journal of Impact Engineering, 2000, 24: 277-298.
[9] CUI Liang, Kiernan S, Gilchrist M. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507: 215-225.
[10] Andrews E, Sanders W, Gibson L. Compressive and tensile behavior of aluminum foams [J]. Materials Science and Engineering A, 1999, 270: 113-124.
[11] Mukai T, Kanahashi H, Miyoshi T, el at. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading [J]. Scripta Materialia, 1999, 40 (8): 921-927.
[12] 高善清, 王高朋. 泡沫铝材料抗爆炸冲击问题研究 [J]. 金属功能材料, 2013, 20(6):45-52. GAO Shanqing, WANG Gaopeng. Study on explosion and shock wave resistance of aluminum foam material [J]. Metallic Functional Materials, 2013, 20(6): 45-52. (in Chinese)
[13] 王永刚, 施绍裘, 王礼立. 采用改进的SHPB方法对泡沫铝动态力学性能的研究 [J]. 实验力学, 2003, 18(2):257-264.WANG Yonggang, SHI Shaoqiu, WANG Lili. An improved SHPB method and its application in the study of dynamic mechanical behavior of aluminum foams [J]. Journal of Experimental Mechanics, 2013, 18 (2): 257-264. (in Chinese)
[14] 丁圆圆, 杨黎明, 王礼立. 泡沫铝材料动态本构参数的实验确定 [J]. 爆炸与冲击, 2015, 35(1):1-8. DING Yuanyuan, YANG Liming, WANG Lili. Experimental determination of dynamic constitutive parameters for aluminum foams [J]. Explosion and Shock Waves, 2015, 35 (1): 1-8. (in Chinese)
[15] 章超, 徐松林, 王鹏飞, 等. 不同冲击速度下泡沫铝变形和应力的不均匀性 [J]. 爆炸与冲击, 2015, 35(4):567-575.ZHANG Chao, XU Songlin, WANG Pengfei, et al. Deformation and stress nonuniformity of aluminum foam under different impact speeds [J]. Explosion and Shock Waves, 2015, 35 (4): 567-575. (in Chinese)
[16] Hallquist J. LS-DYNA Theoretical Manual [M]. Livermore: Livermore Software Technology Corporation, 2006.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn