Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 792-797    DOI: 10.16511/j.cnki.qhdxxb.2017.22.039
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
FSP制备碳纤维增强铝基复合材料的强韧化机理
史清宇1, 曹雄1, 李积元2, 陈高强1, 刘瞿1
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 先进成形制造教育部重点实验室, 北京 100084;
2. 青海大学 材料工程学院, 西宁 810016
Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites
SHI Qingyu1, CAO Xiong1, LI Jiyuan2, CHEN Gaoqiang1, LIU Qu1
1. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Mechanical Engineering, Qinghai University, Xining 810016, China
全文: PDF(4359 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 铝合金是汽车、航空等领域轻量化过程中的重要应用材料,但铝合金强度和塑性的不足限制了其应用。为了提高5052铝合金的强度及塑性,采用多道搅拌摩擦加工的方法成功制备出碳纤维增强铝基复合材料。对复合材料的力学性能和组织形貌进行了测试和分析,结果表明:复合材料的抗拉强度相较于母材提升了18.9%,延伸率提升了19.7%。通过扫描电镜和透射电镜观察发现复合材料中碳纤维弥散分布,复合材料断口观察到韧窝内有明显的碳纤维拔出痕迹,说明复合材料的强度及塑性提升与碳纤维的弥散分布及碳纤维的载荷转移作用有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史清宇
曹雄
李积元
陈高强
刘瞿
关键词 铝基复合材料碳纤维搅拌摩擦加工力学性能    
Abstract:Aluminum alloys are important light metals for weight reduction in cars and aircrafts. However, aluminum alloy applications are limited when the aluminum alloy strength is not sufficient. The mechanical properties of Al5052 can be improved by using carbon fiber reinforced aluminum composites fabricated using multiple-pass friction stir processing (FSP). The mechanical properties and microstructures of the composites are investigated with the composite having 18.9% higher tensile strength and 19.7% higher elongation rate than the matrix. The microstructure observation indicates that the carbon fibers are uniformly dispersed in the matrix. Fractography results show pulled-out carbon fibers in the inner surfaces of dimples. The strengthening of the composites is due to load transfer to the homogeneous carbon fibers.
Key wordsaluminum matrix composite    carbon fiber    friction stir processing    mechanical properties
收稿日期: 2017-02-23      出版日期: 2017-08-15
ZTFLH:  TB333  
引用本文:   
史清宇, 曹雄, 李积元, 陈高强, 刘瞿. FSP制备碳纤维增强铝基复合材料的强韧化机理[J]. 清华大学学报(自然科学版), 2017, 57(8): 792-797.
SHI Qingyu, CAO Xiong, LI Jiyuan, CHEN Gaoqiang, LIU Qu. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 792-797.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.039  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/792
  表1 Al5052及复合材料试样具体加工参数
  图1 搅拌摩擦加工示意图及试样取样示意图
  图2 复合材料的微观组织形貌及能谱分析
  图3 复合材料碳纤维与铝基体界面的透射电镜图
  图4 母材、对照组及复合材料的显微维氏硬度对比
  图5 母材、对照组及复合材料的拉伸曲线
  表2 母材、对照组及复合材料的力学性能
  图6 母材及复合材料的拉伸断口的扫描电镜图
  图7 复合材料断裂过程示意图
[1] Ozturk F, Toros S, Kilic S. Evaluation of tensile properties of 5052 type aluminum-magnesium alloy at warm temperatures[J]. Archives of Materials Science & Engineering, 2008, 34(2):95-98.
[2] Frank E, Hermanutz F, Buchmeiser M. Carbon fibers:Precursors, manufacturing, and properties[J]. Macromolecular Materials and Engineering, 2012, 297(6):493-501.
[3] YANG Qiurong, LIU Jinxu, LI Shukui, et al. Fabrication and mechanical properties of Cu-coatedwoven carbon fibers reinforced aluminum alloy composite[J]. Materials & Design, 2014, 57:442-448.
[4] Ramesh C, Adarsha H, Pramod S, et al. Tribological characteristics of innovative Al6061-carbon fiber rod metal matrix composites[J]. Materials & Design, 2013, 50:597-605.
[5] LI Shenghan, CHAO Chuenguang. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites[J]. Metallurgical and Materials Transactions A, 2004, 35(7):2153-2160.
[6] SUN Kai, SHI Qingyu, SUN Yanjun, et al. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing[J]. Materials Science and Engineering:A, 2012, 547:32-37.
[7] Maurya R, Kumar B, Ariharan S, et al. Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy[J]. Materials & Design, 2016, 98:155-166.
[8] QU Jun, XU Hanbing, FENG Zhili, et al. Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing[J]. Wear, 2011, 271(9/10):1940-1945.
[9] Salehi M, Saadatmand M, Mohandesi J. Optimization of process parameters for producing AA6061/SiC nano-composites by friction stir processing[J]. Transactions Nonferrous Metals Society of China, 2012, 22(5):1055-1063.
[10] WANG Wei, SHI Qingyu, LIU Peng, et al. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing[J]. Journal of Materials Processing Technology, 2009, 209(4):2099-2103.
[11] Ni D, Wang J, Zhou Z, et al. Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing[J]. Journal of Alloys and Compounds, 2014, 586:368-374.
[12] Sharifitabar M, Sarani A, Khorshahian S, et al. Fabrication of 5052Al/Al<sub>2</sub>O<sub>3</sub> nanoceramic particle reinforced composite via friction stir processing route[J]. Materials & Design, 2011, 32(8/9):4164-4172.
[13] 孙凯. 搅拌摩擦加工制备颗粒增强镁基复合材料方法及机理研究[D]. 北京:清华大学, 2012.SUN Kai. Research on Fabrication of Particle Reinforced Magnesium Matrix Composites by Friction Stir Processing and the Mechanism[D]. Beijing:Tsinghua University, 2012. (in Chinese)
[1] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[2] 刘瞿, 陈高强, 曾申波, 张帅, 潘际銮, 史清宇. 组织细化对AZ91D镁合金腐蚀性能的影响[J]. 清华大学学报(自然科学版), 2019, 59(9): 765-771.
[3] 魏鲲鹏, 戴兴建, 邵宗义. 碳纤维波纹管弯曲刚度的测量及有限元分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 587-592.
[4] 赖兴华, 王磊, 李洁, 姜亚洲, 夏勇. 铝型材防撞梁的碰撞断裂失效表征[J]. 清华大学学报(自然科学版), 2017, 57(5): 504-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn