Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
简单管路中水击的类型偏误分析及解析计算
张明1, 郑双凌1, 马吉明1, 齐文彪2
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 吉林省水利水电勘测设计研究院, 长春 130021
Effect of errors in predicting the water hammer types and pressures in a simple pipeline
ZHANG Ming1, ZHENG Shuangling1, MA Jiming1, QI Wenbiao2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Jilin Province Water Resource and Hydropower Consultative Company, Changchun 130021, China
全文: PDF(1320 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 简单管路的水击分析是水电站设计的重要部分。该文对目前设计中采用的阀门开度匀速变化时水击的解析计算中存在的问题进行研究,详细推导和分析水击计算的区域划分,给出了正确的负水击区域划分图;通过以直线代替曲线的方式,提出足够精确的简化水击区域划分图;通过与精确水击区域划分图的比较,阐明了简化水击计算中可能出现的类型误判;基于直接求取水击最大值的考虑,提出第一相水击和末相水击类型的后验判别方法。此外,还给出了直接水击和第一相水击的直接计算公式。算例分析表明:该文给出的水击区域划分、提出的水击类型后验判别方法以及推导的水击直接计算公式正确可行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明
郑双凌
马吉明
齐文彪
关键词 水电站简单管路水击解析方法开度    
Abstract:The analysis of water hammer in a simple pipeline is a fundamental problem in hydropower station designs. The type and evaluation of maximum water hammer in simple pipeline during the uniform closure or opening of a hydraulic turbine is studied. In particular, the type prediction is rectified for negative water hammer. The accurate simplified models for the prediction of positive and negative indirect water hammers are proposed to replace curves in the indirect water hammer domains with straight lines. With these models, possible errors due to inaccurate predictions of the water hammer in the simplified water hammer evaluation model currently adopted in the hydroelectric engineering are illustrated comparatively. A method is given for directly determining the maximum indirect water hammer pressure, no longer needing the prior prediction of first-phase or end-phase water hammer. In addition, formulas are given for the indirect water hammer without solving all the equations. The validity and applicability of the water hammer prediction and evaluation, including the method and formulas for indirect water hammer, are verified by examples.
Key wordshydropower station    simple pipeline    water hammer    analytical method    opening degree
收稿日期: 2017-02-16      出版日期: 2017-09-15
ZTFLH:  TV732.4  
引用本文:   
张明, 郑双凌, 马吉明, 齐文彪. 简单管路中水击的类型偏误分析及解析计算[J]. 清华大学学报(自然科学版), 10.16511/j.cnki.qhdxxb.2017.26.052.
ZHANG Ming, ZHENG Shuangling, MA Jiming, QI Wenbiao. Effect of errors in predicting the water hammer types and pressures in a simple pipeline. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 986-992.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.052  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/986
  图1 水击类型的区域分界线
  图2 正水击的类型区域划分
  图3 正水击简化计算的类型区域划分
  图4 负水击的类型区域划分
  图5 当ρ>1时简化负水击简化计算的类型区域划分
  图6 水击的类型区域划分
[1] 王仁坤, 张春生. 水工设计手册:第8卷水电站建筑物[M]. 2版. 北京:中国水利水电出版社, 2013.WANG Renkun, ZHANG Chunsheng. Hydraulic Design Handbook:Volume 8 Hydropower Station Buildings[M]. 2nd ed. Beijing:China Water & Power Press, 2013. (in Chinese)
[2] DL5077-1997. 水工建筑物荷载设计规范[S]. 北京:中华人民共和国电力工业部, 1998.DL5077-1997. Specifications for Load Design of Hydraulic Structures[S]. Beijing:Electric Power Industry Ministry of the People's Republic of China, 1998. (in Chinese)
[3] Zhang Y L, Miao M F, Ma J M. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure[J]. Water Science and Engineering, 2010, 3(2):174-189.
[4] Mansuri B, Salmasi F, Oghati B. Sensitivity analysis for water hammer problem in pipelines[J]. Iranica Journal of Energy & Environment, 2014, 5(2):124-131.
[5] Emadi J, Solemani A. Maximum water hammer sensitivity analysis[J]. World Academy of Science, Engineering and Technology, 2011, 5(1):17-20.
[6] Choon T W, Aik L K, Aik L E, et al. Investigation of water hammer effect through pipeline system[J]. International Journal on Advanced Science Engineering Information Technology, 2012, 2(3):48-53.
[7] Ghidaoui M S, Zhao M, McInnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Reviews, 2005, 58(1):49-76.
[8] Yang J D, Wu R Q. On the basic equations of water hammer[J]. Journal of Hydrodynamics, 1996, 8(2):62-71.
[9] 杨玲霞, 李树慧, 侯咏梅, 等. 水击基本方程的改进[J]. 水利学报, 2007, 38(8):948-952.YANG Lingxia, LI Shuhui, HOU Yongmei, et al. Improvement of fundamental equation of water hammer[J]. Journal of Hydraulic Engineering, 2007, 38(8):948-952. (in Chinese)
[10] 李树慧. 水击方程的完善与计算研究[D]. 郑州:郑州大学, 2006.LI Shuhui. Study on the Improvement and Calculation of Water Hammer Equation[D]. Zhengzhou:Zhengzhou University, 2006. (in Chinese)
[11] 董晨钟. 水击基本理论研究[D]. 郑州:郑州大学, 2014.DONG Chenzhong. Study on the Basic Theory of Water Hammer[D]. Zhengzhou:Zhengzhou University, 2014. (in Chinese)
[12] 黄李冰. 水击计算方法和水击理论研究[D]. 郑州:郑州大学, 2012.HUANG Libing. Study on the Method for Calculation and the Theory of Water Hammer[D]. Zhengzhou:Zhengzhou University, 2012. (in Chinese)
[13] Wang C, Yang J D. Water hammer simulation using explicit-implicit coupling methods[J]. Journal of Hydraulic Engineering, 2015, 141(4):04014086.
[14] Zhou Z X, Keat T S. Theoretical, numerical and experimental study of water hammer in pipe system with column surge chamber[J]. Journal of Hydrodynamics, 2003, 15(5):20-28.
[15] 邓东明. 压力管道最大压力计算控制条件的探讨[J]. 云南水力发电, 2006, 22(3):27-28.DENG Dongming. Discussion on the control conditions for calculation of maximum pressure in penstock[J]. Yunnan Water Power, 2006, 22(3):27-28. (in Chinese)
[16] 克利夫琴科·Г И. 水力发电厂的水锤及水轮机合理调节程序[M]. 张昌龄, 译. 北京:电力工业出版社, 1956.Кривценко Г И. Water Hammer in Hydropower Plant and the Reasonable Adjustment Procedure of Turbine[M]. ZHANG Changling, trans. Beijing:China Electric Power Press, 1956. (in Chinese)
[17] 莫斯特柯夫·M A, 巴什基洛夫·A A. 水锤计算[M]. 王世泽, 译. 北京:燃料工业出版社, 1955.Мостков М А, Башкиров А А. Calculation of Water Hammer[M]. Wang Shize, trans. Beijing:Fuel Industry Press, 1955. (in Chinese)
[18] Berlin V V, Murav'ev O A. Governing the turbine-generator unit of a small-scale hydropower plant with a long penstock[J]. Power Technology and Engineering, 2015, 49(4):240-244.
[1] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[2] 李明, 林鹏, 李子昌, 刘元广, 张睿, 高向友. 缺口导流期碾压混凝土坝智能通水温控[J]. 清华大学学报(自然科学版), 2023, 63(7): 1060-1067.
[3] 祁宁春, 聂强, 来记桃, 陈永灿, 李永龙. 水电站多元场景水下智能巡检关键技术与实践[J]. 清华大学学报(自然科学版), 2023, 63(7): 1124-1134.
[4] 杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
[5] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[6] 樊启祥, 林鹏, 蒋树, 魏鹏程, 李果. 金沙江下游大型水电站岩石力学与工程综述[J]. 清华大学学报(自然科学版), 2020, 60(7): 537-556.
[7] 罗贯军, 王克祥, 郭增光, 谭尧升, 阿旺加措. 复杂河床坝基岩体盖重固结灌浆关键技术[J]. 清华大学学报(自然科学版), 2020, 60(7): 575-581.
[8] 黄伟, 魏鹏程. 特高拱坝全坝基无盖重固结灌浆关键技术[J]. 清华大学学报(自然科学版), 2020, 60(7): 582-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn