Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 94-100    DOI: 10.16511/j.cnki.qhdxxb.2018.21.002
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
声传感器阵列风洞测量结果优化
季建朝1,2, 张宇2, 王明新2
1. 清华大学 航天航空学院, 北京 100084;
2. 陆军航空兵学院, 北京 101123
Optimization of acoustic sensor arrays for wind tunnel measurements
JI Jianchao1,2, ZHANG Yu2, WANG Mingxin2
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Army Aviation Institute, Beijing 101123, China
全文: PDF(3519 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 风洞中使用声传感器进行声学测量,通道噪声和背景噪声不可避免,其强度甚至超过信号源。噪声的存在与风洞工作参数、风与壁面的相互作用以及声传感器选择有直接关系。该文根据噪声产生的原因,通过通道滤波与处理谱交叉矩阵对角线元素相结合来优化通道噪声,设计扩展Kalman滤波器渐进跟踪背景噪声相位差来优化相干背景噪声。仿真结果表明:所提出的方法可以有效减少旁瓣数量、抑制旁瓣水平,减少噪声对波束形成结果的影响,改善声传感器阵列的成像效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季建朝
张宇
王明新
关键词 声传感器阵列波束形成气动噪声测量信号处理    
Abstract:Acoustic sensor arrays used in wind tunnels for acoustic measurements are affected by channel and background noise which can be greater than the signal sources. The noise is mainly related to the wind tunnel parameters, interactions between the wind and the wall, and the acoustic sensor. This study combines channel signal filtering with processing of the cross spectral matrix (CSM) diagonal elements to recover the signal of interest from the channel noise with an extended Kalman filter to track the phase difference of the background noise to optimize the coherent background noise. Simulations show that this method effectively reduces the number of side lobes, suppresses the side lobe level, reduces the influence of noise on the beamforming results, and greatly improves the imaging by the acoustic sensor array.
Key wordssensor array    beamforming    acoustic noise measurement    signal processing
收稿日期: 2017-05-27      出版日期: 2018-01-15
ZTFLH:  TB52+9  
引用本文:   
季建朝, 张宇, 王明新. 声传感器阵列风洞测量结果优化[J]. 清华大学学报(自然科学版), 2018, 58(1): 94-100.
JI Jianchao, ZHANG Yu, WANG Mingxin. Optimization of acoustic sensor arrays for wind tunnel measurements. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 94-100.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.002  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/94
  图1 阵列 信号处理过程
  图2 波束形成结果对比
  图3 时域信号滤除通道噪声
  图4 通道噪声优化
  图5 相干背景噪声优化
  图6 m 取不同值时相位估计误差|? ^-? |收敛情况
[1] MOREAU D J, DOOLAN C J, ALEXANDER W N, et al. Wall-mounted finite airfoil-noise production and prediction[J].AIAA Journal, 2016, 54(5):1637-1651.
[2] PAGANIJR C C, SOUZA D S, MEDEIROS M A F. Slat noise:Aeroacoustic beamforming in closed-section wind tunnel with numerical comparison[J].AIAA Journal, 2016, 54(7):2100-2115.
[3] NERI E, KENNEDY J, BENNETT G J. Aeroacoustic source separation on a full scale nose landing gear featuring combinations of low noise technologies[C]//ASME 2015 Noise Control and Acoustics Division Conference at Internoise. San Francisco, USA:American Society of Mechanical Engineers, 2015:V001T01A006.
[4] DOBRZYNSKI W, CHOW L C, SMITH M, et al. Experimental assessment of low noise landing gear component design[J].International Journal of Aeroacoustics, 2010, 9(6):763-786.
[5] 周家检, 郝璇, 张卫民, 等. 相阵列技术在民机机体气动噪声研究中的应用[J]. 空气动力学学报, 2016(1):91-97. ZHOU J J, HAO X, ZHANG W M, et al. Application of phased array technique in the research of civil airplane airframe noise[J].Acta Aerodynamica Sinica, 2016, 34(1):91-97. (in Chinese)
[6] SILVERMAN H F, YU Y, SACHAR J M, et al. Performance of real-time source-location estimators for a large-aperture microphone array[J].IEEE Transactions on Speech and Audio Processing, 2005, 13(4):593-606.
[7] HUANG J, ZHANG X, GUO F, et al. Design of an acoustic target classification system based on small-aperture microphone array[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(7):2035-2043.
[8] PAN C, CHEN J, BENESTY J. Theoretical analysis of differential microphone array beamforming and an improved solution[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2015, 23(11):2093-2105.
[9] GENESCA M, ROMEU J, ARCOS R, et al. Measurement of aircraft noise in a high background noise environment using a microphone array[J].Transportation Research Part D:Transport & Environment, 2013, 18(1):70-77.
[10] 李元首, 陈宝, 周国成, 等. 用于风洞试验的麦克风阵列设计及校准方法研究[J]. 声学技术, 2014, 33(S2):377-379. LI Y S, CHEN B, ZHOU G C, et al. Research of calibration method and microphone array designing[J].Technical Acoustics, 2014, 33(S2):377-379. (in Chinese)
[11] BENESTY J, CHEN J, HUANG Y. Microphone array signal processing[J].Journal of the Acoustical Society of America, 2008, 125(6):4097-4098.
[12] FENECH B A.Accurate aeroacoustic measurements in closed-section hard-walled wind tunnels[D]. Southampton, UK:University of Southampton, 2009:60-63.
[13] HUANG X. Real-time algorithm for acoustic imaging with a microphone array[J].Journal of the Acoustical Society of America, 2009, 125(5):190-195.
[14] PIERCE A D, SMITH P W. Acoustics:An introduction to its physical principles and applications[J].Physics Today, 1981, 34(12):56-57.
[15] BURNSIDE N, JAEGER S, REINERO B, et al. Array design and performance for a large scale airframe noise study[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Breckenridge, USA, 2002:2576-2587.
[16] MUELLER T J. Aeroacoustic measurements[M]. Berlin, Germany:Springer, 2002.
[17] MA J L, ZENG Q N, HU D, et al. Speech enhancement algorithm based on microphone array under multiple noise environments[J].Journal of Computer Applications, 2015, 35(8):2341-2344.
[18] KAWASE T, NIWA K, FUJIMOTO M, et al. Real-time integration of statistical model-based speech enhancement with unsupervised noise PSD estimation using microphone array[C]//2016 IEEE International Conference on Acoustics. Shanghai, 2016:604-608.
[19] Welch G, Bishop G. An introduction to the Kalman filter[R/OL]. (2007-03-08)[2017-05-01]. http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html.
[20] JOHANSSON A, MEDVEDEV A. An observer for systems with nonlinear output map[J].Automatica, 2003, 39(5):909-918.
[1] 宫琴, 饶诚, 郑硕. 抑制多方向语音噪声的人工耳蜗语音增强算法[J]. 清华大学学报(自然科学版), 2020, 60(2): 181-188.
[2] 宫琴, 郑硕. 基于波束形成与最大似然估计的近距离双麦克风语音增强算法[J]. 清华大学学报(自然科学版), 2018, 58(6): 603-608.
[3] 张健, 徐杰, 包秀国, 周若华, 颜永红. 应用于语种识别的加权音素对数似然比特征[J]. 清华大学学报(自然科学版), 2017, 57(10): 1038-1041,1047.
[4] 陈萧, 徐波. 改进的用于口语处理的基频提取算法[J]. 清华大学学报(自然科学版), 2017, 57(1): 95-99.
[5] 畅江, 张雪英, 张奇萍, 陈宏涛, 孙颖, 胡凤云. 不同语种及非言语情感声音的ERP研究[J]. 清华大学学报(自然科学版), 2016, 56(10): 1131-1136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn