Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 921-928    DOI: 10.16511/j.cnki.qhdxxb.2018.26.038
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
复杂应变路径下Q&P980超高强钢的非弹性回复行为
韩飞, 操召兵
北方工业大学 机械与材料工程学院, 北京 100144
Inelastic recovery of Q&P980 ultra high strength steel with a complicated deformation path
HAN Fei, CAO Zhaobing
School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
全文: PDF(4009 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 板材成形过程中复杂加载路径的改变会影响其弹塑性流动行为。以超高强钢淬火—配分(quenching&partitioning,Q&P)980钢为研究对象,在室温下沿着轧制方向的不同角度进行2步拉伸实验,得到不同应力状态下的应力—应变曲线,并根据单位体积塑性功相等原则,确定了板材不同等效塑性应变(0%、1%、4%、6%)下的实验屈服轨迹。结果表明:在应变路径变化上,初始流动应力显著降低,特别在45°和90°方向上,瞬时时段之后的流动应力存在持续的偏移,较大应变条件下各向异性比较明显。实验屈服轨迹呈外凸性,部分屈服轨迹不对称,随变形程度的增加,屈服轨迹向外扩大。通过对比简单加载和循环加载,分析其弹塑性行为,并建立各自的卸载弦数学模型,指出弹性模量随应变的增加而降低,降低到一定程度后趋于平缓。在相同塑性应变下,循环加载时弹性模量的变化值比简单加载时要大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩飞
操召兵
关键词 超高强钢复杂加载路径屈服轨迹非弹性回复    
Abstract:The loading paths used for sheet metal forming affect its elastic-plastic flow behavior. Quenching & partitioning (Q&P) 980 steel was used here as the research object. Two-step tensile tests using different angles relative to the rolling direction were conducted at room temperature to obtain the stress-strain curves for various stress states. The equal volume plasticity work principle was used to determine the experimental yield loci of different equivalent plastic strain (0%, 1%, 4%, 6%). The results show that the initial flow stress is significantly reduced by changing the strain path, especially in the 45° and 90° directions, the flow stress after the transient period various by a fixed amount, and the anisotropy is quite large for larger strains. The test yield loci line is convex and some of the yield loci are asymmetric. As the deformation increases, the yield loci expand outward. Simple loading and cyclic loading were compared to analyze the elasto-plastic behavior and develop unloading string mathematical models. The elastic modulus decreases quickly with increasing strain, then decreases slowly and then becomes constant. For a given plastic strain, the change in the elastic modulus during cyclic loading is greater than when simply loaded.
Key wordsultra high strength steel    complex strain path    yield loci    inelastic recovery
收稿日期: 2018-04-20      出版日期: 2018-10-17
基金资助:国家自然科学基金资助项目(50905001);国家自然科学基金和上海宝钢集团公司联合资助项目(51074204);北京市自然科学基金资助项目(3112010);北京市青年拔尖人才项目(2014000026833ZK12)
引用本文:   
韩飞, 操召兵. 复杂应变路径下Q&P980超高强钢的非弹性回复行为[J]. 清华大学学报(自然科学版), 2018, 58(10): 921-928.
HAN Fei, CAO Zhaobing. Inelastic recovery of Q&P980 ultra high strength steel with a complicated deformation path. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 921-928.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.038  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/921
  表1 Q&P980钢的主要化学成分
  图1 拉伸试样尺寸(单位: mm)
  图2 实验平台
  图3 循环加载和简单加载实验
  图4 Q&P980不同轧制方向真应力—真应变曲线
  图5 小试样单向拉伸下的真应力—真应变曲线
  图6 不同应变条件下塑性应变比与轧制方向关系曲线
  图7 不同应变条件下流动应力比与轧制方向关系曲线
  图8 Q&P980钢板实验屈服轨迹点
  图9 Q&P980钢板实验屈服轨迹拟合曲线
  图10 Q&P980钢简单加载下真应力—真应变曲线
  图11 循环加载—卸载下真应力—真应变曲线
  图12 第4次卸载循环的真应力—真应变曲线
  表2 不同塑性应变下的卸载模量
  图13 卸载模量随等效塑性应变的关系曲线
[1] 宋思川, 陈龑, 姜峻岭, 等. QP980钢在车身轻量化开发中的应用[J]. 现代制造工程, 2017(1):51-54. SONG S C, CHEN Y, JIANG J L, et al. Application of QP980 in lightweight development of body in white[J]. Modern Manufacturing Engineering, 2017(1):51-54. (in Chinese)
[2] 吴向东, 万敏, 周贤宾. 汽车薄钢板应力应变曲线及屈服轨迹的研究[J]. 力学学报, 2004, 36(4):507-512. WU X D, WAN M, ZHOU X B. Stress-strain curves and yield loci of auto steel sheet[J]. Acta Mechanica Sinica, 2004, 36(4):507-512. (in Chinese)
[3] TARIGOPULA V, HOPPERSTAD O S, LANGSETH M, et al. Elastic-plastic behaviour of dual-phase,high-strength steel under strain-path changes[J]. European Journal of Mechanics-A/Solids, 2008, 27(5):764-782.
[4] LIAO J, SOUSA J A, LOPES A B, et al. Mechanical, micros-tructural behaviour and modelling of dual phase steels under complex deformation paths[J]. International Journal of Plasticity, 2016, 93:269-290.
[5] YOSHIDA F, UEMORI T, FUJIWARA K. Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain[J]. International Journal of Plasticity, 2002, 18(5-6):633-659.
[6] 高付海, 桂良进, 范子杰. 两种新型单拉平板剪切试件的设计与对比[J]. 清华大学学报(自然科学版), 2010, 50(2):299-302. GAO F H, GUI L J, FAN Z J. Design and comparison of two new in-plane shear specimens[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(2):299-302.(in Chinese)
[7] 余海燕, 孙喆. 非比例加载路径下TRIP钢的应变硬化行为[J]. 塑性工程学报, 2012, 19(6):90-94. YU H Y, SUN Z. Strain hardening behavior of TRIP steels under non-proportional loading path[J]. Journal of Plasticity Engineering, 2012, 19(6):90-94. (in Chinese)
[8] 余海燕, 鲍立, 高云凯. 相变诱发塑性钢板的非弹性回复行为及其对回弹的影响[J]. 机械工程学报, 2010, 46(18):46-51. YU H Y, BAO L,GAO Y K. Inelastic recovery behavior of transformation induced plasticity steels and its influence on springback[J]. Journal of Mechanical Engineering, 2010, 46(18):46-50. (in Chinese)
[9] 庄京彪, 刘迪辉, 李光耀. 基于包辛格效应的回弹仿真分析[J]. 机械工程学报, 2013, 49(22):84-90. ZHUANG J B, LIU D H, LI G Y. Analysis of springback simulation based on Bauschinger effect[J]. Journal of Mechanical Engineering, 2013, 49(22):84-90. (in Chinese)
[10] KIM H J, KIM C M, BARLAT F, et al.Nonlinear elastic behaviors of low and high strength steels in unloading and reloading[J]. Materials Science & Engineering A, 2013, 562:161-171.
[11] 孙珊珊. 卸载循环对Q&P980钢微观组织影响的研究[D]. 长春:吉林大学, 2016. SUN S S, Study on the effect of unloading cycle on microstructure of Q&P980 steel[D]. Changchun:Jilin University, 2016. (in Chinese)
[12] WU P D, MACEWEN S R, LLOYD D J, et al. On pre-straining and the evolution of material anisotropy in sheet metals[J]. International Journal of Plasticity, 2005, 21(4):723-739.
[13] NAKA T, UEMORI T, HINO R, et al. Effects of strain rate, temperature and sheet thickness on yield locus of AZ31 magnesium alloy sheet[J]. Journal of Materials Processing Technology, 2008, 201(1-3):395-400.
[14] BARLAT F, BECKER R C, HSYASHIDA Y, et al. Yielding description for solution strengthened aluminum alloys[J]. International Journal of Plasticity, 1997, 13(4):385-401.
[15] BARLAT F, MAEDA Y, CHUNG K, et al. Yield function development for aluminum alloy sheets[J]. Journal of the Mechanics & Physics of Solids, 1997, 45(11-12):1727-1763.
[16] FRIEDEL J. Dislocations[M]. Oxford:Pergamon Press, 1964.
[17] GHOSH A K. A Physically-based constitutive model for metal deformation[J]. Acta Metallurgica, 1980, 28(11):1443-1465.
[1] 韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7): 677-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn