Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 934-940    DOI: 10.16511/j.cnki.qhdxxb.2018.21.023
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究
张展博, 李胜强
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 先进核能技术协同创新中心, 北京 100084
Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank
ZHANG Zhanbo, LI Shengqiang
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1481 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 液体晃动是一种常见的现象,可能造成飞行器失稳、箱体结构损坏、液面监测困难等危害。因此对液体晃动的抑制受到了广泛深入的研究,其中最常用的方法就是在箱体内部布置挡板。基于Darcy定律的多孔介质模型为模拟多孔挡板提供了简单易行的方法,该文在对比实验结果验证数值模拟方法可靠性的基础上,研究了低频大幅晃动条件下水平多孔挡板不同浸没深度对液面晃动的影响,发现了波峰和波谷变化的规律以及在特殊情况下挡板导致波峰高度增加的现象,并对其机理进行了简要分析。挡板的阻碍对液面造成了扰动,导致液面围绕无挡板情况下的液面位置振荡运动,在特定情况下可能会出现更高的波峰,使得液面晃动看起来更加剧烈。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张展博
李胜强
关键词 水平多孔挡板浸没深度低频大幅晃动数值模拟    
Abstract:Liquid sloshing is a common phenomenon that can cause instabilities in aircraft, can damage the tanks, and can complicate liquid level monitoring. Therefore, sloshing suppression has been extensively studied. The most common method is to arrange baffles in the tanks. The porous media model based on Darcy's law provides a simple method for simulating flows in tanks with porous baffles. In this study, experimental data was used to verify the reliability of numerical simulations used to investigate the influence of various immersion depths of horizontal porous baffles on liquid sloshing for low-frequency, large-amplitude sloshing conditions. The results show that the sloshing crests and troughs change more with higher sloshing crests because of the baffles in some cases. The baffles disturb the liquid surface which make the liquid surface oscillate more than without baffles. Thus, the baffles increasing the liquid sloshing in some cases.
Key wordshorizontal porous baffle    baffle submergence depth    low-frequency, large-amplitude sloshing    numerical simulation
收稿日期: 2018-06-25      出版日期: 2018-10-17
通讯作者: 李胜强,副研究员。E-mail:sqli@tsinghua.edu.cn     E-mail: sqli@tsinghua.edu.cn
引用本文:   
张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
ZHANG Zhanbo, LI Shengqiang. Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 934-940.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.023  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/934
  图1 水箱示意图
  图2 多孔介质模型的验证
  图3 文[18]无挡板水箱两侧液面高度差(左侧减右侧)
  图4 数值模拟中不同频率下两侧壁面处液面高度对比
  图5 无挡板水箱模拟与文[18]实验结果对比
  图6 有挡板水箱模拟与文[18]实验结果对比
  图7 圆柱水箱在水平小幅振荡激励下液面高度随频率变化
  图8 圆柱水箱在水平小幅振荡激励下液面高度随频率变化
  图9 文[18]实验中第一共振峰高度与浸没深度的关系
  图10 高频区间内不同角频率下波峰高度随浸没深度的变化
  图11 无挡板和有挡板条件下液面高度随时间的变化
  图12 三个时间差的示意图
  图13 每个周期内三个时间差的变化
  图14 不同角频率下波谷随挡板浸没深度的变化
[1] MOLIN B, REMY F, ARNAUD G, et al. On the dispersion equation for linear waves traveling through or over dense arrays of vertical cylinders[J]. Applied Ocean Research, 2016, 61:148-155.
[2] IRANMANESH A, PASSANDIDEH-FARD M. A 2D numerical study on suppressing liquid sloshing using a submerged cylinder[J]. Ocean Engineering, 2017, 138:55-72.
[3] STRAND I M, FALTINSEN O M. Linear sloshing in a 2D rectangular tank with a flexible sidewall[J]. Journal of Fluids & Structures, 2017, 73:70-81.
[4] TURNER M R. Liquid sloshing in a horizontally forced vessel with bottom topography[J]. Journal of Fluids & Structures, 2016, 64:1-26.
[5] LUO M, KOH C G, BAI W. A three-dimensional particle method for violent sloshing under regular and irregular excitations[J]. Ocean Engineering, 2016, 120:52-63.
[6] CHO I H, KIM M H. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank[J]. Ocean Engineering, 2016, 126:364-373.
[7] CHO I H, CHOI J S, Kim M H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle[J]. Ocean Engineering, 2017, 138:23-34.
[8] FALTINSEN O M, TIMOKHA A N. Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen[J]. Journal of Sound & Vibration, 2011, 330(7):1490-1503.
[9] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle:Quasilinear modal analysis and experiments[J]. Physics of Fluids, 2011, 23(4):1058.
[10] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen[J]. Journal of Engineering Mathematics, 2011, 70(1-3):93-109.
[11] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J]. Physics of Fluids, 2011, 23(6):042101.
[12] AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound & Vibration, 2012, 331(1):41-52.
[13] JUNG J H, YOON H S, LEE C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44(1):79-89.
[14] WANG W, PENG Y, ZHOU Y, et al. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles[J]. Applied Ocean Research, 2016, 59:543-563.
[15] YANG Q, JONES V, MCCUE L. Free-surface flow interactions with deformable structures using an SPH-FEM model[J]. Ocean Engineering, 2012, 55(15):136-147.
[16] CHEN Z, ZONG Z, LI H T, et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method[J]. Ocean Engineering, 2013, 59(2):129-141.
[17] BRAR G S, SINGH S. An experimental and CFD analysis of sloshing in a tanker[J]. Procedia Technology, 2014, 14(4):490-496.
[18] JIN H, LIU Y, LI H J. Experimental study on sloshing in a tank with an inner horizontal perforated plate[J]. Ocean Engineering, 2014, 82(2):75-84.
[19] REBOUILLAT S, LIKSONOV D. Fluid-structure interaction in partially filled liquid containers:A comparative review of numerical approaches[J]. Computers & Fluids, 2010, 39(5):739-746.
[20] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[21] WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1):3-25.
[22] TAIT M J, EL DAMATTY A A, ISYUMOV N, et al. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens[J]. Journal of Fluids & Structures, 2005, 20(8):1007-1023.
[23] ZHAO W, YANG J, HU Z, et al. Hydrodynamics of a 2D vessel including internal sloshing flows[J]. Ocean Engineering, 2014, 84(4):45-53.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn