Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (11): 961-965    DOI: 10.16511/j.cnki.qhdxxb.2018.25.042
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
薄壁工件铣削过程中强迫振动响应分析
张洁, 刘成颖
清华大学 机械工程系, 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Forced vibration response during the milling of thin-walled workpieces
ZHANG Jie, LIU Chengying
Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1427 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 由于薄壁工件刚度较低,在加工过程中极易出现较强的强迫振动,因此导致工件加工质量降低,并进一步限制了工艺参数的选择。为求解薄壁工件的强迫振动响应并对其加以抑制,该文针对圆角立铣刀,基于力学方法建立了铣削力模型,通过实验标定切削力系数;基于实验模态分析方法,对薄壁工件的动态特性进行分析,得到刀具-工件振动系统的传递函数和模态参数;基于直接时域求解方法得出了薄壁结构受切削力激励产生的强迫振动响应(forced vibration response,FVR),并以稳态响应最大振幅为判断依据描述工件的振动强度。最后通过仿真得出了刀尖半径对强迫振动响应具有抑制作用的结论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洁
刘成颖
关键词 强迫振动响应(FVR)薄壁工件实验模态工艺参数    
Abstract:Strong forced vibrations can easily occur while milling thin-walled workpieces because of their low stiffness. Such vibrations not only reduce the product quality, but also limit the choose of the machining parameters. The forced vibrations of thin-walled workpieces during milling were investigated by using an R-end milling cutter to reduce the cutting forces and the cutting coefficients in cutting experiments. The dynamics of the thin-walled workpiece were analyzed based on modal experiments to obtain the transfer function and modal parameters of the tool-workpiece system. The forced vibration response was then predicted using a time-domain method. The simulations indicate that a proper nose radius can suppress the forced vibration response.
Key wordsforced vibration response (FVR)    thin-walled workpiece    modal analysis    machining parameters
收稿日期: 2018-01-18      出版日期: 2018-11-21
基金资助:国家科技重大专项(2014ZX04001051)
通讯作者: 刘成颖,副教授,E-mail:liucy@tsinghua.edu.cn     E-mail: liucy@tsinghua.edu.cn
引用本文:   
张洁, 刘成颖. 薄壁工件铣削过程中强迫振动响应分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 961-965.
ZHANG Jie, LIU Chengying. Forced vibration response during the milling of thin-walled workpieces. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 961-965.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.042  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I11/961
  图1 圆角铣刀几何模型
  表1 刀具几何参数
  表2 切削力系数辨识结果
  表2 切削力系数辨识结果
  图3 传递函数及其拟合曲线
  表3 传递函数的极点和留数
  表3 传递函数的极点和留数
  图4 条件 A与条件 B仿真结果对比
  图5 圆角半径对稳态响应幅值的影响
  图6 等效圆柱切深对应的切削力仿真结果
[1] 汪通悦, 何宁, 李亮. 薄壁零件铣削加工的振动模型[J]. 机械工程学报, 2007, 43(8):22-25. WANG T Y, HE N, LI L. Vibration model in milling of thin-walled components[J]. Chinese Journal of Mechanical Engineering, 2007, 43(8):22-25. (in Chinese)
[2] KO T J, KIM H S, LEE S S. Selection of the machining inclination angle in high-speed ball end milling[J]. The International Journal of Advanced Manufacturing Technology, 2001, 17(3):163-170.
[3] MUNOA J, BEUDAERT X, DOMBOVARI Z, et al. Chatter suppression techniques in metal cutting[J]. CIRP Annals, 2016, 65(2):785-808.
[4] KIVANC E B, BUDAK E. Structural modeling of end mills for form error and stability analysis[J]. International Journal of Machine Tools and Manufacture, 2004, 44(11):1151-1161.
[5] TSAI J S, LIAO C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94(2-3):235-246.
[6] TANG A J, LIU Z Q. Deformations of thin-walled plate due to static end milling force[J]. Journal of Materials Processing Technology, 2008, 206(1-3):345-351.
[7] 罗忠, 王宇, 孙宁, 等. 不同边界条件下旋转薄壁短圆柱壳的强迫振动响应计算[J]. 机械工程学报, 2015, 51(9):64-72. LUO Z, WANG Y, SUN N, et al. Forced vibration response calculation of rotating short thin cylindrical shells for various boundary conditions[J]. Journal of Mechanical Engineering, 2015, 51(9):64-72. (in Chinese)
[8] GAO Y Y, MA J W, JIA Z Y, et al. Tool path planning and machining deformation compensation in high-speed milling for difficult-to-machine material thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12):1757-1767.
[9] RIVIÈRE-LORPHÈVRE E, HUYNH H N, VERLINDEN O. Influence of the time step selection on dynamic simulation of milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):4497-4512.
[10] ALTINTAS Y. Manufacturing automation:Metal cutting mechanics, machine tool vibrations, and CNC design[M]. 2nd ed. Cambridge:Cambridge University Press, 2012.
[11] TUYSUZ O, ALTINTAS Y. Frequency domain updating of thin-walled workpiece dynamics using reduced order substructuring method in machining[J]. Journal of Manufacturing Science and Engineering, 2017, 139(7):071013.
[12] DING Y, ZHU L D. Investigation on chatter stability of thin-walled parts considering its flexibility based on finite element analysis[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):3173-3187.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn