Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (12): 1095-1100    DOI: 10.16511/j.cnki.qhdxxb.2018.21.021
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
高压氢气小孔泄漏射流分层流动模型与验证
李雪芳1, 何倩1, 柯道友2, 程林1
1. 山东大学 热科学与工程研究中心, 济南 250061;
2. 清华大学 热科学与动力工程教育部重点实验室, 北京 100084
Validation of flow partitioning model for high pressure hydrogen jets through small orifices
LI Xuefang1, HE Qian1, CHRISTOPHER D M2, CHENG Lin1
1. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China;
2. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
全文: PDF(1883 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 高压氢气泄漏射流是氢安全研究的重要内容,而在一定实验测量的基础上进行数值模拟是该领域的重要研究手段。目前高压氢气射流完整数值模拟存在计算效率低、不稳定和难收敛的问题,而现有的简化模拟方法存在模型假设不合理和计算结果不准确的问题。本文在定量激波结构测量的基础上,结合气体状态方程和守恒方程构建了分层流动模型,综合考虑了实际的射流核心区和边界层内不同的流动情况,且无需计算气流参数变化剧烈的激波区,从而简化了数值模拟计算。采用分层流动模型模拟的速度场和浓度场计算结果与完整模拟的计算值和实验测量值一致,优于采用传统虚喷管模型模拟的结果。该研究为高压氢气泄漏研究提供了一种在保证计算结果准确性基础上提高计算效率的模拟方法,对进一步推动氢安全研究具有一定意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪芳
何倩
柯道友
程林
关键词 氢安全氢气射流分层流动模型模型验证    
Abstract:High pressure hydrogen jets are a critical topic in hydrogen safety research. Numerical simulations validated by measurements are an essential way to study high pressure hydrogen jets. However, the complete modeling of high pressure hydrogen jets is inefficient, unstable and difficult to converge, while the existing simplified models are based on non-physical assumptions and result in inaccurate predictions. A flow partitioning model based on quantitative shock structure measurements was developed by combining a real gas equation of state with the flow and energy conservation equations. The flow partitioning model takes into account the different flow conditions in the core flow region and the mixing layer and avoids modeling the shock region where the gas state varies dramatically which significantly simplifies the calculation. The predicted velocity and concentration distributions using the flow partitioning model agree well with the predictions by the complete model and with measurements, with these predictions being superior to predictions using the canonical notional nozzle model. The present study provides a reduced order modeling approach that simplifies the simulations without sacrificing the accuracy which will benefit hydrogen safety research.
Key wordshydrogen safety    hydrogen jets    flow partitioning model    model validation
收稿日期: 2018-05-03      出版日期: 2018-12-13
基金资助:国家自然科学基金面上项目(51706125、51476091);山东省自然科学基金博士项目(ZR2017BEE003)
通讯作者: 程林,教授,E-mail:cheng@sdu.edu.cn     E-mail: cheng@sdu.edu.cn
引用本文:   
李雪芳, 何倩, 柯道友, 程林. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1095-1100.
LI Xuefang, HE Qian, CHRISTOPHER D M, CHENG Lin. Validation of flow partitioning model for high pressure hydrogen jets through small orifices. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1095-1100.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.021  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I12/1095
  图1 氢气射流激波结构纹影图像(p0=5MPa)
  图2 激波结构示意图
  图3 (网络版彩图)完整模拟计算得到的射流 Ma云图与纹影图像对比(p0=5MPa)
  图4 沿射流中心线的速度
  图5 射流中心线摩尔分数
  图6 最低可燃轮廓线
[1] MAZLOOMI K, GOMES C. Hydrogen as an energy carrier:Prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3024-3033.
[2] NAJJAR Y S H. Hydrogen safety:The road toward green technology[J]. International Journal of Hydrogen Energy, 2013, 38(25):10716-10728.
[3] SAFFERS J B, MOLKOV V V. Hydrogen safety engineering framework and elementary design safety tools[J]. International Journal of Hydrogen Energy, 2014, 39(11):6268-6285.
[4] RUGGLES A J, EKOTO I W. Experimental investigation of nozzle aspect ratio effects on underexpanded hydrogen jet release characteristics[J]. International Journal of Hydrogen Energy, 2014, 39(35):20331-20338.
[5] 李雪芳, 毕景良, 柯道友. 高压氢气储存系统泄漏的热力学模型[J]. 清华大学学报(自然科学版), 2013, 53(4):503-508. LI X F, BI J L, CHRISTOPHER D M. Thermodynamics models of leaks from high pressure hydrogen storage systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):503-508. (in Chinese)
[6] BONELLI F, VIGGIANO A, MAGI V. A numerical analysis of hydrogen underexpanded jets under real gas assumption[J]. Journal of Fluids Engineering, 2013, 135(12):1894-1901.
[7] HAN S H, CHANG D, KIM J S. Release characteristics of highly pressurized hydrogen through a small hole[J]. International Journal of Hydrogen Energy, 2013, 38(8):3503-3512.
[8] VUORINEN V, YU J, TIRUNAGARI S, et al. Large-eddy simulation of highly underexpanded transient gas jets[J]. Physics of Fluids, 2013, 25(1):281-319.
[9] XU B P, EL HIMA L, WEN J X, et al. Numerical study on the spontaneous ignition of pressurized hydrogen release through a tube into air[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2):205-213.
[10] RUGGLES A J, EKOTO I W. Ignitability and mixing of underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22):17549-17560.
[11] XIAO J, TRAVIS J R, BREITUNG W. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak[J]. International Journal of Hydrogen Energy, 2011, 36(3):2545-2554.
[12] LI X, CHRISTOPHER D M, HECHT E S, et al. Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35 MPa[J]. International Journal of Hydrogen Energy, 2017, 42(11):7457-7466.
[13] LI X, HECHT E S, CHRISTOPHER D M. Validation of a reduced-order jet model for subsonic and underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2016, 41(2):1348-1358.
[14] 李雪芳, 王俞杰, 罗峰, 等. 欠膨胀氢气射流激波结构数值模拟研究[J]. 工程热物理学报, 2018, 39(4):880-886. LI X F, WANG Y J, LUO F, et al. Numerical simulation of shock structures of under-expanded hydrogen jets[J]. Journal of Engineering Thermophysics, 2018, 39(4):880-886. (in Chinese)
[15] WOODMANSEE M A, IYER V. Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield[J]. AIAA Journal, 2004, 42(6):1170-1180.
[16] SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12):2081-2093.
[17] YUCEIL K B, OTUGEN M V. Scaling parameters for underexpanded supersonic jets[J]. Physics of Fluids, 2002, 14(12):4206-4215.
[18] BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1-3):161-171.
[19] EWAN B, MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combustion Science and Technology, 1986, 45(5-6):275-288.
[1] 巴清心, 赵明斌, 赵泽滢, 黄腾, 王建强, 李雪芳, 肖国萍. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn