Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (2): 204-211    DOI: 10.16511/j.cnki.qhdxxb.2018.26.010
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
索驱动并联机器人可控刚度特性
崔志伟1, 唐晓强1,2,3, 侯森浩1, 项程远1
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 摩擦学国家重点实验室, 北京 100084;
3. 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Characteristics of controllable stiffness for cable-driven parallel robots
CUI Zhiwei1, TANG Xiaoqiang1,2,3, HOU Senhao1, XIANG Chengyuan1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
全文: PDF(1931 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在机器人与人交互过程中,机器人可能因刚度过大而对人或产品产生安全威胁。该文提出索驱动并联机器人静态刚度分析及索力分配方法,研究其可控刚度特性问题。首先,通过建立运动学和静力学方程对机器人进行受力分析,并通过引入线矢量和微分变换的方式,推导出结构矩阵对位姿微分的三维Hessian矩阵,建立静态刚度模型,分析索力与机器人刚度间的关系;其次,给出索力多边形计算算法,并研究索力分配方法,完成机器人刚度的有效控制;最后,通过计算实例验证该方法正确性与有效性。结果表明:该方法可以有效控制机器人的系统刚度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔志伟
唐晓强
侯森浩
项程远
关键词 索驱动并联机器人静刚度可控刚度刚度矩阵索力分配    
Abstract:Human-robot interaction include some safety threats to people or products from the robots due to their stiffness. The characteristics of controllable stiffness for cable-driven parallel robots are studied using a static stiffness analysis and cable tension distribution method. The robot kinematics and statics equations are used for the force analysis with the three-dimensional Hessian matrix of the structural matrix to position differential is deduced by introducing a line vector and a differential transform. Then, the static stiffness model is derived for the relationship between the cable tension and the robot stiffness. The robots stiffness is then controlled by analyzing the cable tension polygon and the cable tension distribution. Simulations show that this method can effectively control the robot stiffness.
Key wordscable-driven parallel robot    static stiffness    controllable stiffness    stiffness matrix    cable tension distribution
收稿日期: 2017-08-24      出版日期: 2018-02-15
ZTFLH:  TP242.2  
通讯作者: 唐晓强,教授,E-mail:tang-xq@tsinghua.edu.cn     E-mail: tang-xq@tsinghua.edu.cn
引用本文:   
崔志伟, 唐晓强, 侯森浩, 项程远. 索驱动并联机器人可控刚度特性[J]. 清华大学学报(自然科学版), 2018, 58(2): 204-211.
CUI Zhiwei, TANG Xiaoqiang, HOU Senhao, XIANG Chengyuan. Characteristics of controllable stiffness for cable-driven parallel robots. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 204-211.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.010  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I2/204
  表1 机构及动平台尺寸参数
  图1 八索并联机构图
  图2 索力多边形
  图3 索力多边形计算流程图
  图4 排序后的点
  图5 索力多边形
  图7 点集封闭性
  图8 形心直线
  图9 沿形心直线的索力变化曲线
  图1 0 位姿变化曲线
  表2 π 4 形心线端点处位姿变化
[1] YUAN H, COURTEILLE E, DEBLAISE D. Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity[J]. Mechanism and Machine Theory, 2015, 85:64-81.
[2] YEO S H, YANG G, LIM W B. Design and analysis of cable-driven manipulators with variable stiffness[J]. Mechanism and Machine Theory, 2013, 69:230-244.
[3] BRACKBILL E A, MAO Y, AGRAWAL S K, et al. Dynamics and control of a 4-dof wearable cable-driven upper arm exoskeleton[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE Press, 2009:2300-2305.
[4] KAWAMURA S, KINO H, WON C. High-speed manipulation by using parallel wire-driven robots[J]. Robotica, 2000, 18(1):13-21.
[5] LANDSBERGER S E. Design and construction of a cable-controlled, parallel link manipulator[D]. Cambridge:Massachusetts Institute of Technology, 1984.
[6] 刘欣, 仇原鹰, 盛英. 风洞试验绳牵引冗余并联机器人的刚度增强与运动控制[J]. 航空学报, 2009, 30(6):1156-1164. LIU X, QIU Y Y, SHENG Y. Stiffness enhancement and motion control of a 6-DOF wire-driven parallel manipulator with redundant actuations for wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1156-1164. (in Chinese)
[7] 隋春平, 赵明扬. 3自由度并联柔索驱动变刚度操作臂的刚度控制[J]. 机械工程学报, 2006, 42(6):205-210. SUI C P, ZHAO M Y. Statics and stiffness study on a 3-DOF parallel wire driven flexible manipulator[J]. Chinese Journal of Mechanical Engineering, 2006, 42(6):205-210. (in Chinese)
[8] CHEN S F, KAO I. Geometrical approach to the conservative congruence transformation (CCT) for robotic stiffness control[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA:IEEE Press, 2002, 1:544-549.
[9] ANG M H JR, WANG W, LOH R N K, et al. Passive compliance from robot limbs and its usefulness in robotic automation[J]. Journal of Intelligent and Robotic Systems, 1997, 20(1):1-21.
[10] PASHKEVICH A, KLIMCHIK A, CHABLAT D. Enhanced stiffness modeling of manipulators with passive joints[J]. Mechanism and Machine Theory, 2011, 46(5):662-679.
[11] ZARGARBASHI S H H, KHAN W, ANGELES J. The Jacobian condition number as a dexterity index in 6R machining robots[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(6):694-699.
[12] 杜敬利, 保宏, 崔传贞. 基于等效模型的索牵引并联机器人的刚度分析[J]. 工程力学, 2011, 28(5):194-199. DU J L, BAO H, CUI C Z. Stiffness analysis of cable-driven parallel manipulators using equivalent model[J]. Engineering Mechanics, 2011, 28(5):194-199. (in Chinese)
[13] 杜敬利, 段宝岩, 保宏. 增强索支撑系统扭转刚度的索连接位置优化[J]. 工程力学, 2009, 26(4):252-256. DU J L, DUAN B Y, BAO H. Parametric optimization on cable attachments to maximize twist stiffness of cable-supporting system[J]. Engineering Mechanics, 2009, 26(4):252-256. (in Chinese)
[14] LIM W B, YEO S H, YANG G L. Optimization of tension distribution for cable-driven manipulators using tension-level Index[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):676-683.
[15] WANG X G, MA S Y, LIN Q. Hybrid pose/tension control based on stiffness optimization of cable-driven parallel mechanism in wind tunnel test[C]//Proceedings of the 2nd International Conference on Control, Automation and Robotics. Hong Kong, China:IEEE, 2016:75-79.
[16] 姚蕊. 大跨度索并联机构力特性及尺度综合设计研究[D]. 北京:清华大学, 2010. YAO R. Study on tension characteristic and dimensional synthetic design of cable driven parallel manipulators with large span[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[17] 唐乐为, 唐晓强, 汪劲松, 等. 七索并联对接机构作业空间分析及索力优化设计[J]. 机械工程学报, 2012, 48(21):1-7. TANG L W, TANG X Q, WANG J S, et al. Workspace analysis and tension optimization design in docking parallel mechanism driven by seven cables[J]. Journal of Mechanical Engineering, 2012, 48(21):1-7. (in Chinese)
[18] ZIEGLER G M. Lectures on polytopes[M]. New York:Springer-Verlag, 1993.
[1] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[2] 殷家宁, 姜鹏, 陈明, 姚蕊. FAST索驱动并联机器人与Stewart平台结合的动力学建模方法[J]. 清华大学学报(自然科学版), 2022, 62(11): 1764-1771.
[3] 黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
[4] 关立文, 陈志雄, 刘春, 薛俊. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 965-971.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn