Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (2): 217-224    DOI: 10.16511/j.cnki.qhdxxb.2018.26.003
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
C4A3$-CaSO4-CaO体系中CaO水化活性与膨胀特性关系
韩建国1, 阎培渝1, 张友海2
1. 清华大学 土木工程系, 北京 100084;
2. 电化创新商贸有限公司, 上海 200336
Relationship between CaO hydration activity and its expansive characteristics in C4A3$-CaSO4-CaO systems
HAN Jianguo1, YAN Peiyu1, ZHANG Youhai2
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Denka Infrastructure Technologies Co., Ltd., Shanghai 200336, China
全文: PDF(2106 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文分析了2种CCC(C4A3$-CaSO4-CaO)体系在混凝土中的作用效果,揭示了掺入CCC体系的混凝土产生失水膨胀的原因。测试了2种CCC体系对混凝土工作性、抗压强度、自收缩和干燥收缩、水化热、XRD图谱的影响。CCC体系中的CaO组分由于制备阶段的死烧或低水胶比条件下水化过程受阻,不能在水化早期阶段完成水化;之后,非饱水条件下CaO通过原位反应产生膨胀,使得混凝土表现出失水膨胀现象。结果表明:CCC体系可有效补偿混凝土的自收缩和干燥收缩。研究结果揭示了CCC体系中组分活性与膨胀特性的关系。CCC体系制备过程中应避免对CaO组分的死烧;同时,低水胶比混凝土中应降低CCC体系的掺量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩建国
阎培渝
张友海
关键词 膨胀剂矿物组成水化活性失水膨胀原位反应    
Abstract:The effects of two C4A3$-CaSO4-CaO (CCC) systems were evaluated to explain the cause of water-loss-expansion of CCC systems introduced into concrete. This study measures the influences of two CCC systems on the concrete workability, compressive strength, autogenous shrinkage, dry shrinkage, hydration heat and XRD pattern. The results show that the CCC system can significantly compensate for concrete autogenous shrinkage and drying shrinkage, and that the CaO component of the CCC system is responsible for the water-loss-expansion behavior during drying. The dead burn during manufacturing or hindered hydration in low water-to-binder concrete allowed the CaO to continue to hydrate for unsaturated conditions while resulted in in-situ hydration and expansion. The results show the relationship between the CCC component activity and the expansive characteristics. Thus, CaO dead burn should be avoided and the CCC concentration should be reduced in low water-to-binder concrete.
Key wordsexpansive agent    mineral composition    hydration activity    water-loss-expansion    in-situ reaction
收稿日期: 2017-05-21      出版日期: 2018-02-15
ZTFLH:  TU528.55  
通讯作者: 阎培渝,教授,E-mail:yanpy@tsinghua.edu.cn     E-mail: yanpy@tsinghua.edu.cn
引用本文:   
韩建国, 阎培渝, 张友海. C4A3$-CaSO4-CaO体系中CaO水化活性与膨胀特性关系[J]. 清华大学学报(自然科学版), 2018, 58(2): 217-224.
HAN Jianguo, YAN Peiyu, ZHANG Youhai. Relationship between CaO hydration activity and its expansive characteristics in C4A3$-CaSO4-CaO systems. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 217-224.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.003  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I2/217
  表1 胶凝材料的化学组成质量百分比
  图1 2种 CCC体系膨胀剂的 XRD谱
  表2 2种膨胀剂的矿物组成质量百分比
  表3 净浆配合比
  表4 混凝土配合比
  图2 膨胀剂对新拌混凝土含气量的影响
  图3 膨胀剂对混凝土坍落度的影响
  图4 膨胀剂对 C 4 0混凝土抗压强度的影响
  图5 膨胀剂对 C 8 0混凝土抗压强度的影响
  图6 CCC G 1膨胀剂补偿自收缩的作用效果
  图7 CCC G 2膨胀剂补偿自收缩的作用效果
  图8 2种膨胀剂对 C 4 0混凝土干燥收缩的作用效果
  图9 2种膨胀剂对 C 8 0混凝土干燥收缩的作用效果
  图1 0 2种膨胀剂的掺量—干燥收缩关系
  图1 1 2种膨胀剂在三元相图中的位置
  图1 2 膨胀剂对硅酸盐水泥水化历程的影响
  图1 3 硅酸盐水泥和膨胀剂的水化放热历程
  图1 4 CCC G 1中的矿物和水化产物分析
  图1 5 CCC G 2中的矿物和水化产物分析
[1] 韩建国, 阎培渝, 侯维红. C4A3$-CaSO4-CaO体系在硅酸盐水泥浆体中的膨胀能力[J]. 硅酸盐学报, 2016, 44(8):1120-1125. HAN J G, YAN P Y, HOU W H. Expansion character of C4A3$-CaSO4-CaO system in Portland cement paste[J]. Journal of the Chinese Ceramic Society, 2016, 44(8):1120-1125. (in Chinese)
[2] MEHTA P K, MONTEIRO P J M. Concrete:microstructure, properties, and materials[M]. 4th ed. New York:McGraw-Hill Press, 2014.
[3] RIBEIRO M S S. Expansive cement blend for use in shrinkage-compensating mortars[J]. Materials and Structures, 1998, 31(6):400-404.
[4] KLEIN A, KARBY T, POLIVKA M. Properties of an expansive cement for chemical prestressing[J]. ACI Special Journal, 1961, 58(7):59-62.
[5] KOKUBU M. Use of expansive components for concrete in Japan[J]. ACI Special Publication, 1973, 38:353-378.
[6] BISSONNETTE B, JOLIN M, GAGNÉ R, et al. Evaluation of the robustness of shrinkage-compensating concrete repair concretes prepared with expansive components[J]. ACI Special Journal, 2016, 307:1-18.
[7] MO L W, DENG M, TANG M S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials[J]. Cement and Concrete Research, 2010, 40(3):437-446.
[8] AYLWARD T J. Studies of volume change in expansive cements[M]. West Lafayette:Purdue University, 1965.
[9] KLEIN A, TROXELL G E. Studies of calcium sulfoaluminate admixtures for expansive cements[C]//ASTM Proceeding, West Conshohocken, 1958:968-1008.
[10] OGAWA K, ROY D M. C4A3$ hydration ettringite formation, and its expansion mechanism:I. Expansion; Ettringite stability[J]. Cement and Concrete Research, 1981, 11(5-6):741-750.
[11] OGAWA K, ROY D M. C4A3$ hydration, ettringite formation, and its expansion mechanism:Ⅱ. Microstructural observation of expansion[J]. Cement and Concrete Research, 1982, 12(1):101-109.
[12] 韩建国, 阎培渝, 侯维红. C4A3$-CaSO4-CaO体系在硅酸盐水泥浆体中的膨胀机理[J]. 硅酸盐学报, 2016, 44(11):1543-1551. HAN J G, YAN P Y, HOU W H. Expansion mechanism of C4A3$-CaSO4-CaO in Portland cement paste[J]. Journal of the Chinese Ceramic Society, 2016, 44(11):1543-1551. (in Chinese)
[13] SERRIS E, FAVERGEON L, PIJOLAT M, et al. Study of the hydration of CaO powder by gas-solid reaction[J]. Cement and Concrete Research, 2011, 41(10):1078-1084.
[14] RAMACHANDRAN V S, SEREDA P J, FELDMAN R F. Mechanism of hydration of calcium oxide[J]. Nature, 1964, 201(4916):288-289.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn