Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (5): 450-455    DOI: 10.16511/j.cnki.qhdxxb.2018.25.007
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
Brayton空间核能系统质量估算模型
游尔胜, 佘顶, 石磊
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Mass estimation model for Brayton cycle space nuclear power systems
YOU Ersheng, SHE Ding, SHI Lei
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1338 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 空间核能系统具有输出功率高、持续时间长等特点,是中国未来大型太空任务的理想选择,与地面核装置相比,其质量和体积直接决定着系统性能。该文在系统部件分析的基础上,建立了一个适用于闭式Brayton循环的质量估算模型,并开发了对应的MATLAB计算程序SPRBC。模型涵盖了核反应堆、屏蔽层、Brayton单元、回热器、热辐射器等主要部件。其中,核反应堆和屏蔽层的质量根据物理设计得到,Brayton单元的质量根据经验公式得到,回热器和热辐射器的质量根据换热器设计得到。该文研究不同功率下的系统质量,可以得出百千瓦级时系统比质量在30 kg/kWe左右。当输出功率达到兆瓦级水平时,系统比质量有可能降低到10 kg/kWe以下。此外,该文还对一个电功率为1.76 MW的Brayton空间核能系统进行了质量分析。结果表明:系统比质量可达到6.14 kg/kWe,热辐射器面积约为665 m2;系统总质量约为10.8 t,其中核反应堆、屏蔽层和Brayton单元的份额较大,分别占22.5%、22%和26.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游尔胜
佘顶
石磊
关键词 比质量质量估计Brayton单元核动力系统太空应用    
Abstract:Due to their high power and long lifetimes, nuclear power systems are being considered for long space missions in the future. Unlike current terrestrial nuclear facilities, the system mass and size are very important for space applications and define the system performance. A mass estimation model for closed Brayton cycles is studied in this paper. The MATLAB code SPRBC was used to calculate the total mass and the specific mass of a Brayton cycle space power system, including the heaviest components of the nuclear reactor, the shielding, the Brayton rotating unit, the regenerator and the heat radiator. The specific mass is nearly 30 kg/kWe for a system with hundreds of kilowatts electric power and less than 10 kg/kWe for megawatt systems. A 1.76 MW system had a specific mass of 6.14 kg/kWe and a radiator area of about 665 m2. The total mass was nearly 10.8 t, with the nuclear reactor be 22.5% of the mass, the shielding being 22% and the Brayton rotating unit being 26.4%.
Key wordsspecific mass    mass estimation    Brayton rotating unit    nuclear power system    space application
收稿日期: 2017-05-20      出版日期: 2018-05-15
ZTFLH:  TL99  
基金资助:国家自然科学基金资助项目(11605101)
通讯作者: 石磊,教授,E-mail:shlinet@tsinghua.edu.cn     E-mail: shlinet@tsinghua.edu.cn
作者简介: 游尔胜(1992-),男,博士研究生。
引用本文:   
游尔胜, 佘顶, 石磊. Brayton空间核能系统质量估算模型[J]. 清华大学学报(自然科学版), 2018, 58(5): 450-455.
YOU Ersheng, SHE Ding, SHI Lei. Mass estimation model for Brayton cycle space nuclear power systems. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 450-455.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.007  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I5/450
  图1 空间核反应堆系统基本组成
  图2 两种典型的闭式 Brayton循环
  图3 SP100项目中参考的屏蔽层结构布置 [11]
  图4 SPBRC基本计算流程
  图5 系统比质量随电功率的变化
  图6 Brayton空间核能系统设计方案
  表1 系统主要设计参数参考值
  表2 系统主要性能参数的计算结果
  图7 系统主要部件的质量份额
[1] BUDEN D. Summary of space nuclear reactor power systems (1983-1992)[C]//Tenth Symposium on Space Nuclear Power and Propulsion. Albuquerque, USA:Idaho National Engineering Laboratory, 1993:51-57.
[2] BENNETT G L. A look at the Soviet space nuclear power program[C]//Energy Conversion Engineering Conference. Washington DC, USA:National Aeronautics and Space Administration, 1989:1187-1195.
[3] EI-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10):833-849.
[4] EI-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2008, 49(3):402-411.
[5] NASA. Prometheus project final report[R]. Pasadena, USA:Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2005.
[6] RUAULT J, MASSON F, WORMS J, et al. MEGAHIT:Update on the advanced propulsion roadmap for HORIZON2020[R]. Rome, Italy:European Commission, 2014.
[7] FULLER R L. Closed brayton cycle power conversion unit for fission surface power phase I final report[R]. Cleveland, USA:NASA Glenn Research Center, 2010.
[8] JUHASZ A J. Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources[D]. Ann Arbor, USA:Cleveland State University, 2005.
[9] MIYAZAKI K, TAKAHASHI K, SASAKI T, et al. Study on specific mass of nuclear electric propulsion system with closed cycle MHD generator[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, USA:American Institute of Aeronautics and Astronautics, 2014:1-11.
[10] MARSHALL A C. RSMASS-D models:An improved method for estimating reactor and shield mass for space reactor applications[R]. Albuquerque, USA:Sandia National Laboratory, 1997.
[11] DEMUTH S F. SP100 space reactor design[J]. Progress in Nuclear Energy, 2003, 42(3):323-359.
[12] WEBB J A, GROSS B J. Aconceptual multi-megawatt system based on a tungsten CERMET reactor[C]//Nuclear and Emerging Technologies for Space 2011. Albuquerque, USA:Idaho National Laboratory, 2011:231-240.
[13] JUHASZ A J. High conductivity carbon-carbon heat pipes for light weight space power system radiators[R]. Cleveland, USA:NASA Glenn Research Center, 2008.
[14] MASON L, GIBSON M, POSTON D. Kilowatt-class fission power systems for science and human precursor missions[R]. Cleveland, USA:NASA Glenn Research Center, 2013.
[1] 褚文博,罗禹贡,罗剑,李克强. 电驱动车辆的整车质量与路面坡度估计[J]. 清华大学学报(自然科学版), 2014, 54(6): 724-728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn