Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (5): 523-528    DOI: 10.16511/j.cnki.qhdxxb.2018.25.027
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |
环己烷氧化生产环己酮过程建模与参数分析
李秀喜, 曹丽琦, 王兴
华南理工大学 化学与化工学院, 广州 510640
Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone
LI Xiuxi, CAO Liqi, WANG Xing
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(1091 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 环己烷无催化氧化生产环己酮是一个高危工艺,当尾氧体积分数到达一定限度会发生爆炸,分析尾氧体积分数随关键参数的变化对企业的安全生产有重要意义。该文针对工艺中的反应器建立了数学过程模型,考虑了不同操作参数下传质和水力学及环己烷挥发对反应过程的影响,同时建立了反应动力学及物料平衡模型。模拟结果和实际生产数据能较好地相符。结果表明:当气相氧气体积分数达到28%,进气量为6 750 Nm3·h-1时,尾氧体积分数会增加到3%,引发爆炸。确定反应温度、进料氧气体积分数、气相进料量为反应过程中的敏感参数,为环己酮的安全生产提供理论和控制依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秀喜
曹丽琦
王兴
关键词 生产安全技术环己烷氧化过程模拟参数分析    
Abstract:Uncatalysed oxidation of cyclohexane into cyclohexanone is dangerous since the process will explode when the tail oxygen volume fraction reaches a critical limit. Thus, the tail oxygen volume fraction needs to be well characterized for various operating parameters for safe production. A mathematical model of the reaction is given here as a function of the mass transfer rate, hydraulics and cyclohexane volatilization. The reaction kinetics and material balance model are also given. Simulations are then in good agreement with actual production data. The results show that when the gas phase oxygen volume fraction is 28% and the feed gas flow rate is 6 750 Nm3·h-1, the oxygen tail gas volume fraction increases to 3%, which will cause an explosion. The reaction temperature, the gas phase oxygen volume fraction and the feed gas flow rate are the most sensitive parameters in the reaction process, with the model providing a theoretical basis for controlling safe production of cyclohexanone.
Key wordsproduction safety    cyclohexane oxidation    process simulation    parameter analytic
收稿日期: 2017-09-02      出版日期: 2018-05-15
ZTFLH:  TQ086  
基金资助:国家自然科学基金资助项目(21376091)
作者简介: 李秀喜(1966-),男,教授。E-mail:cexxli@scut.edu.cn
引用本文:   
李秀喜, 曹丽琦, 王兴. 环己烷氧化生产环己酮过程建模与参数分析[J]. 清华大学学报(自然科学版), 2018, 58(5): 523-528.
LI Xiuxi, CAO Liqi, WANG Xing. Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 523-528.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.027  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I5/523
  表1 不同温度下液相活度系数
  表2 7#反应釜参数
  图1 环己烷无催化氧化反应动力学网络
  表3 校正前产物分布计算值与实际值比较
  表4 富氧氧化条件下计算值与实际值比较
  图2 反应温度对尾氧体积分数的影响
  图3 环己烷挥发量随温度变化
  图4 反应压力对尾氧体积分数的影响
  图5 环己烷挥发量随压力变化情况
  图6 进料氧气体积分数对尾氧体积分数的影响
  图7 进气量对尾氧体积分数的影响
  图8 尾氧体积分数相对变化率与各参数变化率之间关系
[1] UNNARKAT A P, SRIDHAR T, WANG H T, et al. Cobalt molybdenum oxide catalysts for selective oxidation of cyclohexane[J]. AIChE Journal, 2016, 62(12):4384-4402.
[2] 刘懿, 朱明乔, 王磊, 等. 微管内环己烷无催化氧化工艺条件对产物分布影响研究[J]. 高校化学工程学报, 2016, 30(2):378-383.LIU Y, ZHU M Q, WANG L, et al. Effects of process conditions on products distribution of cyclohexane non-catalytic oxidation in microcapillary[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2):378-383. (in Chinese)
[3] 李湘平, 周卫东. 环己酮生产现状及下游产业链分析[J]. 石油化工技术与经济, 2016, 32(4):1-5.LI X P, ZHOU W D. Analysis on production status and downstream industrial chain of cyclohexanone[J]. Technology & Economics in Petrochemicals, 2016, 32(4):1-5. (in Chinese)
[4] BHATTACHARY A. Modeling a continuous multistage liquid phase cyclohexane oxidation reactor network[J]. Chemical Engineering and Processing, 2005, 44:567-579.
[5] AGUSTRIYANTO R, FATMAWATI A. Model of steady state cyclohexane oxidation for ketone-alcohol (K-A) oil production[J]. Makara Journal of Science, 2014, 18(3):91-95.
[6] 张述伟, 余丰年, 俞裕国. 计算机辅助环己烷氧化反应器扩产的研究[J]. 大连理工大学学报, 1991, 31(3):287-292.ZHANG S W, YU F N, YU Y G. Study of increase in capacity of industrial cyclohexane oxidation reaction system[J]. Journal of Dalian University of Technology, 1991, 31(3):287-292. (in Chinese)
[7] 夏评, 王弘轼, 宋维端. 环己烷氧化过程的模拟与分析[J]. 华东化工学院学报, 1992, 18(6):388-393.XIA P, WANG H S, SONG W D. Simulation and analysis of cyclohexane oxidation process[J]. Journal of East China Institute of Chemical Technology, 1992, 18(6):388-393. (in Chinese)
[8] 田震华, 魏寿彭, 阚学成, 等. 环己烷氧化过程的模拟和优化[J]. 北京化工学院学报, 1994, 21(2):5-12.TIAN Z H, WEI S P, KAN X C, et al. Simulation and optimization for process of the oxidation of cyclohexane[J]. Journal of Beijing Institute of Chemcial Technology, 1994, 21(2):5-12. (in Chinese)
[9] 周权. 环己烷无催化氧化工艺研究[D]. 大连:大连理工大学, 2006.ZHOU Q. Study of the optimization of non-catalytic oxidation of cyclohexane[D]. Dalian:Dalian University of Technology, 2006. (in Chinese)
[10] WILKE C R, CHANG P. Correlation of diffusion coefficients in dilute solutions[J]. AIChE Journal, 1995, 1(2):264-270.
[11] AKITA K, YOSHIDA F. Bubble size, interfacial area, and liquid-phase mass transport coefficient in bubble columns[J]. Industrial and Engineering Chemistry Process Design and Development, 1974, 13(1):84-91.
[12] YAWS C L. Thermodynamic and physical property data[M]. New York, USA:Gulf Publishing Co New, 1992.
[13] FISCHER J, LANGE T, BOEHLING R, et al. Uncatalyzed selective oxidation of liquid cyclohexane with air in a microcapillary reactor[J]. Chemical Engineering Science, 2010, 65:4866-4872.
[14] SURESH A K, STRIDHAR T, POTTER O E. Autocatalytic oxidation of cyclohexane mass transport and chemical reaction[J]. AIChE Jounal, 1988, 34(1):81-93.
[15] COQUELET C, SOO C, VALTZ A, et al. "Vapor-liquid" equilibrium measurements and modeling for the cyclohexane+ cyclohexanol binary system[J]. Fluid Phase Equilibria, 2010, 298(1):33-37.
[16] 陈纪忠, 费黎明, 范镇, 等. 环己烷液相无催化剂的氧化动力学研究[J]. 化学反应工程与工艺, 1992, 9(3):237-245.CHEN J Z, FEI L M, FAN Z, et al. A study on the kinetics of liquid phase oxidation of cyclohexane without catalyst[J]. Chemical Reaction Engineering and Technology, 1992, 9(3):237-241. (in Chinese)
[17] KRZYSZTOFORSKI A, WOJCIK Z, POHORECKI R, et al. Industrial contribution to the reaction engineering of cyclohexane oxidation[J]. Industrial & Engineering Chemistry Process Design & Development, 1986, 25(4):894-898.
[18] JEVTIV R, RAMACHANDRAN P A, DUDUKOVIC M P. Effect of oxygen on cyclohexane oxidation:A stirred tank study[J]. Industrial & Engineering Chemistry Research, 2009, 48:7986-7993.
[19] CHEN J R. An inherently safer process of cyclohexane oxidation using pure oxygen:An example of how better process safety leads to better productivity[J]. Process Safety, 2004, 23(1):72-81.
[1] 陈健, 童川, 彭勇, 汤志刚. 多尺寸填料塔中CO2吸收过程的实验和模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1348-1353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn