Abstract:Electric furnace nickel slag was alkali-activated by sodium hydroxide and water glass to study the reaction product properties with measurements of reaction heat of the binder, the mortar compressive strength, and the morphology and structure of the reaction products. The results show that the mortar compressive strength is the greatest for a sodium hydroxide content of 5%. The optimum modulus of the alkali-activated electric furnace nickel slag is 0.5 for a water glass content of 10%. The high alkalinity improves the initial strength, while the silicate ions improve the later strength. The reaction products are amorphous regardless of the type of alkali used and are denser with sodium hydroxide. The reaction products have more polymerized silica-oxygen connections than the raw materials. No new aluminum-oxygen configurations are found.
王强, 杨峻, 王登权. 碱激发电炉镍渣的反应产物性能[J]. 清华大学学报(自然科学版), 2018, 58(6): 593-597,602.
WANG Qiang, YANG Jun, WANG Dengquan. Properties of the reaction products of alkali-activated electric furnace nickel slag. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 593-597,602.
[1] 孔令军, 赵祥麟, 刘广龙. 红土镍矿冶炼镍铁废渣环境安全性能研究[J]. 铜业工程, 2014(1):61-64. KONG L J, ZHAO X L, LIU G L. Research on environment safety of the laterite nickel ore smelting ferro-nickel slag[J]. Copper Engineering, 2014(1):61-64. (in Chinese) [2] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12):1232-1243. [3] 段光福, 刘万超, 陈湘清, 等. 江西某红土镍矿冶炼炉渣作水泥混合材[J]. 金属矿山, 2012, 41(11):159-162. DUANG G F, LIU W C, CHEN X Q, et al. The laterite nickel ore smelting slag used as cement admixture[J]. Metal Mine, 2012, 41(11):159-162. (in Chinese) [4] LEMONIS N, TSAKIRIDIS P E, KATSIOTIS N S, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction and Building Materials, 2015, 81:130-139. [5] PROVIS J L. Geopolymers and other alkali activated materials:Why, how, and what?[J]. Materials and Structures, 2014, 47(1-2):11-25. [6] PIPILIKAKI P, KATSIOTI M. Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes[J]. Construction and Building Materials, 2009, 23(6):2246-2250. [7] JUNAID M T, KAYALI O, KHENNANE A, et al. A mix design procedure for low calcium alkali activated fly ash-based concretes[J]. Construction and Building Materials, 2015, 79:301-310. [8] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F. Alkali-activated slag cements:Kinetic studies[J]. Cement and Concrete Research, 1997, 27(3):359-368. [9] BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1):46-54. [10] LI C, SUN H H, LI L T. A review:The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9):1341-1349. [11] ZHANG Z H, WANG H, PROVIS J L. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR[J]. Journal of Sustainable Cement-Based Materials, 2012, 1(4):154-166. [12] 刘泽, 周瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6):1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6):1830-1834. (in Chinese) [13] MARAGKOS I, GIANNOPOULOU I P, PANIAS D. Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2):196-203. [14] ZAHARAKI D, KOMNITSAS K. Long term behaviour of ferronickel slag inorganic polymers in various environments[J]. Fresenius Environmental Bulletin, 2012, 21(8):2436-2440. [15] KOMNITSAS K, ZAHARAKI D, PERDIKATSIS V. Geopolymerisation of low calcium ferronickel slags[J]. Journal of Materials Science, 2007, 42(9):3073-3082. [16] YANG T, YAO X, ZHANG Z H. Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J]. Construction and Building Materials, 2014, 59:188-194. [17] ZHANG Z H, ZHU Y C, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology:A case study of high-magnesium nickel slag[J]. Journal of Cleaner Production, 2017, 141:463-471. [18] RAVIKUMAR D, PEETHAMPARAN S, NEITHALATH N. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder[J]. Cement and Concrete Composite, 2010, 32(6):399-410. [19] PUERTAS F, MARTIÍNEZ-RAMIÍREZ S, ALONSO S, et al. Alkali-activated fly ash/slag cements:Strength behaviour and hydration products[J]. Cement and Concrete Research, 2000, 30(10):1625-1632. [20] FERNÁNDEZ-JIMÉNEZ A, PALOMO J G, PUERTAS F. Alkali-activated slag mortars:Mechanical strength behaviour[J]. Cement and Concrete Research, 1999, 29(8):1313-1321. [21] GARCÍA-LODEIRO I, FERNÁNDEZ-JIMÉNEZ A, BLANCO M T, et al. FTIR study of the sol-gel synthesis of cementitious gels:C-S-H and N-A-S-H[J]. Journal of Sol-Gel Science and Technology, 2008, 45(1):63-72. [22] LODEIRO I G, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3):147-153. [23] KWAN S, LAROSA J, GRUTZECK M W. 29Si and 27Al MASNMR study of stratlingite[J]. Journal of the American Ceramic Society, 1995, 78(7):1921-1926. [24] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cement and Concrete Research, 2003, 33(5):769-774 [25] OH J E, JUN Y, JEONG Y. Characterization for geopolymers from compositionally and physically different Class F fly ashes[J]. Cement and Concrete Composites, 2014, 50(21):16-26.