Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (7): 623-629    DOI: 10.16511/j.cnki.qhdxxb.2018.25.032
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于支持向量机和遗传算法的变压器故障诊断
吐松江·卡日1, 高文胜1, 张紫薇1, 莫文雄2, 王红斌2, 崔屹平2
1. 清华大学 电机工程与应用电子技术系, 北京 100084;
2. 广州供电局有限公司, 广州 510410
Power transformer fault diagnosis based on a support vector machine and a genetic algorithm
KARI·Tusongjiang1, GAO Wensheng1, ZHANG Ziwei1, MO Wenxiong2, WANG Hongbing2, CUI Yiping2
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. Guangzhou Power Supply Bureau, Guangzhou 510410, China
全文: PDF(2828 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了提高变压器故障诊断准确率,该文提出了一种基于支持向量机(support vector machine,SVM)和遗传算法(genetic algorithm,GA)的电力变压器故障诊断方法。基于5种常用油中溶解气体分析方法的20种不同输入建立初始特征集合,采用二进制方式将支持向量机惩罚因子、核参数及特征子集编码至遗传算法染色体,建立基于5折交叉验证正确率的适应度函数,联合优化最优特征子集和支持向量机参数组合。然后依据最优特征子集和参数组合训练诊断模型,并利用测试集和故障实例验证诊断性能。实例分析结果表明:该方法能准确、有效地诊断变压器故障,比基于传统特征子集的支持向量机-遗传算法模型、IEC三比值法、反向传播神经网络和朴素Bayes等方法具有更高的诊断准确率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吐松江·
卡日
高文胜
张紫薇
莫文雄
王红斌
崔屹平
关键词 故障诊断油中溶解气分析支持向量机(SVM)遗传算法(GA)    
Abstract:A fault diagnosis method was developed based on a support vector machine (SVM) and a genetic algorithm (GA) to improve the accuracy of power transformer fault diagnoses. The system receives 20 different inputs from 5 common dissolved gas analysis (DGA) approaches to create the original feature set. Then, the penalty parameters, the SVM kernel function parameters and feature subsets are randomly encoded into the GA chromosome using a binary code technique with the 5-fold cross validation accuracy of the training set used as the fitness function. The SVM parameters and the feature subsets are then simultaneously optimized by the genetic algorithm. Finally, DGA samples from the testing set are examined by the model trained with the optimal parameters and the selected feature subsets. The results demonstrate that this method is able to accurately distinguish power transformer faults. This method has fault diagnosis accuracy than GA-SVM models with a non-optimal feature subset, the IEC method, the back propagation neuro network (BPNN) and the Naïve Bayes method.
Key wordsfault diagnosis    dissolved gas analysis    support vector machine    genetic algorithm
收稿日期: 2017-10-07      出版日期: 2018-07-15
基金资助:国家“八六三”高技术项目(2015AA050201)
通讯作者: 高文胜,副教授,E-mail:wsgao@tsinghua.edu.cn     E-mail: wsgao@tsinghua.edu.cn
引用本文:   
吐松江·卡日, 高文胜, 张紫薇, 莫文雄, 王红斌, 崔屹平. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623-629.
KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.032  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I7/623
  表1 常用诊断方法特征量
  图1 染色体二进制编码方式
  图2 基于 GAGSVM 的故障诊断建模与寻优流程
  表2 测试集与样本集数据分类
  表3 不同K 值下的故障诊断模型性能比较
  图3 GA适应度变化曲线
  图4 交叉验证正确率及对应特征数
  图5 测试集样本实际分类与预测分类对比
  表4 不同特征条件下 GAGSVM 诊断准确率
  表5 不同方法故障诊断准确率
  表6 油色谱试验数据
  图6 变压器拆解图
[1] SUN H C, HUANG Y C, HUANG C M. A review of dissolved gas analysis in power transformers[J]. Energy Procedia, 2012, 14:1220-1225.
[2] American National Standards Institute. IEEE guide for the interpretation of gases generated in oil-immersed transformers:IEEE C57.104-2008[S]. New York, NY:IEEE, 2008.
[3] International Electrotechnical Commission. Oil-filled electrical equipment-sampling of gases and analysis of free and dissolved gases-guidance:IEC 60567:2011[S]. Geneva:International Electrotechnical Commission, 2011.
[4] International Electrotechnical Commission. Mineral oil-impregnated electrical equipment in service-guide to the interpretation of dissolved and free gases analysis:IEC 60599[S]. Geneva:International Electrotechnical Commission, 2007.
[5] 中华人民共和国国家质量监督检验检疫总局. 变压器油中溶解气体分析和判断导则:GB/T 7252-2001[S]. 北京:中国标准出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Guide to the analysis and the diagnosis of gases dissolved in transformer oil:GB/T 7252-2001[S]. Beijing:Standards Press of China, 2004. (in Chinese)
[6] ROGERS R R. IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis[J]. IEEE Transactions on Electrical Insulation, 1978, EI-13(5):349-354.
[7] DORNENBURG E, STRITTMATTER W. Monitoring oil-cooled transformers by gas analysis[J]. Brown Boveri Review, 1974, 61:238-247.
[8] DUVAL M. A review of faults detectable by gas-in-oil analysis in transformers[J]. IEEE Electrical Insulation Magazine, 2002, 18(3):8-17.
[9] MYERS S D, KELLY J J, PARRISH R H. A guide to transformer maintenance[M]. Ohio:Transformer Maintenance Institute, 1981.
[10] MIROWSKI P, LECUN Y. Statistical machine learning and dissolved gas analysis:A review[J]. IEEE Transactions on Power Delivery, 2012, 27(4):1791-1799.
[11] RAISAN A, YAACOB M M, ALSAEDI M A. Faults diagnosis and assessment of transformer insulation oil quality:Intelligent methods based on dissolved gas analysis a-review[J]. International Journal of Engineering & Technology, 2015, 4(1):54-60.
[12] GHONEIM S S M, TAHA I B M, ELKALASHY N I. Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(3):1838-1845.
[13] AHMAD M B, YAACOB Z B. Dissolved gas analysis using expert system[C]//Proceedings of the Student Conference on Research and Development. Shah Alam, Malaysia:IEEE, 2002:313-316.
[14] KHAN S A, EQUBAL M D, ISLAM T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1):590-596.
[15] ZHAO W Q, ZHANG Y F, ZHU Y L. Diagnosis for transformer faults based on combinatorial Bayes network[C]//Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China:IEEE, 2009:1-3.
[16] LV G Y, CHENG H Z, ZHAI H B, et al. Fault diagnosis of power transformer based on multi-layer SVM classifier[J]. Electric Power Systems Research, 2005, 75(1):9-15.
[17] YIN Z Y, HOU J. Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes[J]. Neurocomputing, 2016, 174:643-650.
[18] 刘爱国, 薛云涛, 胡江鹭, 等. 基于GA优化SVM的风电功率的超短期预测[J]. 电力系统保护与控制, 2015, 43(2):90-95. LIU A G, XUE Y T, HU J L, et al. Ultra-short-term wind power forecasting based on SVM optimized by GA[J]. Power System Protection and Control, 2015, 43(2):90-95. (in Chinese)
[19] HAN H, WANG H J, DONG X C. Transformer fault dignosis based on feature selection and parameter optimization[J]. Energy Procedia, 2011, 12:662-668.
[20] SAHRI Z, YUSOF R. Fault diagnosis of power transformer using optimally selected DGA features and SVM[C]//Proceedings of the 10th Asian Control Conference. Kota Kinabalu, Malaysia:IEEE, 2015:1-5.
[21] LI J Z, ZHANG Q G, WANG K, et al. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2):1198-1206.
[22] SAMIRMI F D, TANG W H, WU H. Feature selection in power transformer fault diagnosis based on dissolved gas analysis[C]//Proceedings of the 4th IEEE/PES Innovative Smart Grid Technologies Europe. Lyngby, Denmark:IEEE, 2013:1-5.
[23] CORINNA C, VLADIMIR V. Support-vectors networks[J]. Machine Learning, 1995, 20:273-297.
[24] 尹金良. 基于相关向量机的油浸式电力变压器故障诊断方法研究[D]. 北京:华北电力大学, 2013. YIN J L. Study on oil-immersed power transformer fault diagnosis based on relevance vector machine[D]. Beijing:North China Electric Power University, 2013. (in Chinese)
[25] CHANG C C, LIN C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27.
[1] 赵泽恒, 赵劲松. 基于破坏性实验和自动编码器的风机皮带剩余寿命预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1458-1466.
[2] 宋佳, 石若凌, 郭小红, 刘杨. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
[3] 董春玲, 赵越, 张勤. 动态故障诊断中的立体因果建模与不确定性推理方法[J]. 清华大学学报(自然科学版), 2018, 58(7): 614-622.
[4] 徐洪平, 刘洋, 易航, 阎小涛, 康健, 张文瑾. 运载火箭测发网络异常流量识别技术[J]. 清华大学学报(自然科学版), 2018, 58(1): 20-26,34.
[5] 赵越, 董春玲, 张勤. 动态不确定因果图用于复杂系统故障诊断[J]. 清华大学学报(自然科学版), 2016, 56(5): 530-537,543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn