IQ-separated baseband structure for high-speedsatellite digital communication
PEI Yukui1,2, HAO Haoran3, SU Li3
1. Tsinghua Space Center, Tsinghua University, Beijing 100084, China; 2. Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; 3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract:Increased satellite digital communication rates require larger channel bandwidths which require analog-digital converters (ADCs) with higher sampling rates in the receiver. The in-phase/quadrature (IQ) data have to be sampled separately for ultra-high sampling rates, which requires IQ-separated processing. A baseband structure developed here for IQ-separated processing uses redesigned pilot arrays, an adjusted processing order and modified algorithms that gives separate frequency error estimates and timing synchronization on IQ data. Simulations show that this structure is fast with a bit-error-rate only 2 dB higher than the traditional structure.
[1] 夏克文. 卫星通信[M]. 西安:西安电子科技大学出版社, 2008. XIA K W. Satellite communication[M]. Xi'an:Xidian University Press, 2008. (in Chinese) [2] VIDAL O, VERELST G, LACAN J, et al. Next generation high throughput satellite system[C]//Proceedings of IEEE First AESS European Conference on Satellite Telecommunications. Rome, Italy, 2012:1-7. [3] PELTON J N. New millimeter, terahertz, and light-wave frequencies for satellite communications[M]//PELTON J N, MADRY S, CAMACHO-LARA S. Handbook of satellite applications. Cham, Switzerland:Springer, 2017:413-429. [4] 关响生. 面向IEEE 802.11aj的单载波物理层验证平台设计与实现[D]. 北京:清华大学, 2015.GUAN X S. Design and implementation of IEEE 802.11aj SC PHY prototype[D]. Beijing:Tsinghua University, 2015. (in Chinese) [5] ROSETI C, LUGLIO M, ZAMPOGNARO F. Analysis and performance evaluation of a burst-based TCP for satellite DVB RCS links[J]. IEEE/ACM Transactions on Networking, 2010, 18(3):911-921. [6] KAY S. A fast and accurate single frequency estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12):1987-1990. [7] FITZ M P. Further results in the fast estimation of a single frequency[J]. IEEE Transactions on Communications, 1994, 42(234):862-864. [8] RIFE D, BOORSTYN R. Single tone parameter estimation from discrete-time observations[J]. IEEE Transactions on Information Theory, 1974, 20(5):591-598. [9] GARDNER F. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Transactions on Communications, 1986, 34(5):423-429. [10] FITZ M P. Planar filtered techniques for burst mode carrier synchronization[C]//Proceedings of Global Telecommunications Conference. Phoenix, USA, 1991:365-369. [11] DICK C, HARRIS F, RICE M. Synchronization in software radios. Carrier and timing recovery using FPGAs[C]//Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. Napa Valley, USA, 2000:195-204. [12] OERDER M, MEYR H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 1988, 36(5):605-612. [13] HWANG J, CHU C. FPGA implementation of an all-digital T/2-spaced QPSK receiver with Farrow interpolation timing synchronizer and recursive Costas loop[C]//Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits. Fukuoka, Japan, 2004:248-251.