Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (9): 833-840    DOI: 10.16511/j.cnki.qhdxxb.2018.25.038
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性
靳瑾1, 李娅强2, 张晨1, 匡麟玲1, 晏坚1
1. 清华大学 宇航技术研究中心, 北京 100084;
2. 清华大学 航天航空学院, 北京 100084
Occurrence probability of co-frequency interference and system availability of non-geostationary satellite system in global dynamic scene
JIN Jin1, LI Yaqiang2, ZHANG Chen1, KUANG Linling1, YAN Jian1
1. Tsinghua Space Center, Tsinghua University, Beijing 100084, China;
2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4041 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着非静止轨道(non-geostationary orbit,NGSO)卫星系统数量的增加,使用相同频率的NGSO卫星系统之间相互干扰的问题日益凸显。由于NGSO卫星系统干扰场景具有卫星数目众多和相对关系时变等特点,因此针对静止轨道(geostationary orbit,GSO)卫星系统间干扰的传统仿真方法和评价体系不再适用。该文根据国际电信联盟相关的规则和建议,建立了NGSO卫星系统干扰分析数学模型,提出了卫星星座干扰分析的链路夹角概率分析方法;针对NGSO卫星数目众多和时空关系时变等复杂特征给出了全球场景下NGSO全星座干扰分析的方案,提出了星座间产生有害干扰的概率计算方法和星座可用性指标。在实际卫星网络资料的基础上,以OneWeb系统和O3b系统为例,计算了卫星系统间干扰保护的链路夹角限值范围,并给出了全球范围内卫星链路夹角、干扰状态及可用性比例的概率分布结果,为NGSO星座干扰分析提供了一种可参考的手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳瑾
李娅强
张晨
匡麟玲
晏坚
关键词 卫星通信非静止轨道(NGSO)卫星干扰分析建模仿真链路夹角概率分析    
Abstract:With the increase in the number of non-geostationary orbit (NGSO) satellite systems, the interference between NGSO satellite systems using the same frequency has become increasingly prominent. Because of the large number and time-vary relative motion of NGSO systems, the traditional interference analysis methods and evaluation index, which are aiming for geostationary orbit (GSO) satellite systems, are no longer suitable for NGSO scene. Based on the relevant rules and recommendations of the International Telecommunication Union, this paper establishes a mathematical model of the interference analysis for non-geostationary satellite systems, and proposes a link angle probabilistic analysis method for satellite constellation interference analysis. Aiming at the complicated features such as the large number of satellites consisting of NGSO constellations and the changing temporal and spatial relationship, the scheme of NGSO constellation global interference analysis is given. The probability calculation method of harmful interference between satellite constellations and the index of satellite constellation usability are proposed. On the basis of the actual satellite network data, taking OneWeb system and O3b system as an example, the range of the link angle of the interference protection between the satellite systems is calculated. The angle of the satellite link, the interference state and the probability distribution of the availability ratio on a global scale are given, provides a means for NGSO constellation interference analysis.
Key wordssatellite communication    non-geostationary orbit satellite    interference analysis    modeling and simulation    link angle probabilitic analysis
收稿日期: 2018-01-03      出版日期: 2018-09-19
基金资助:国家自然科学基金资助项目(91738101,91438206)
引用本文:   
靳瑾, 李娅强, 张晨, 匡麟玲, 晏坚. 全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性[J]. 清华大学学报(自然科学版), 2018, 58(9): 833-840.
JIN Jin, LI Yaqiang, ZHANG Chen, KUANG Linling, YAN Jian. Occurrence probability of co-frequency interference and system availability of non-geostationary satellite system in global dynamic scene. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 833-840.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.038  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I9/833
  图1 上行干扰场景示意图
  图2 卫星通信系统频带占用图
  图3 卫星链路夹角示意图
  表1 O3b卫星系统通信参数
  表2 OneWeb卫星系统通信参数
  图4 链路建立时间分布图
  图5 干扰量级和时间分布
  图6 干扰时长分布图
  图7 I/N 随链路夹角变化图
  图8 卫星系统链路夹角概率分布图
  图9 (网络版彩图)1颗 O3b卫星受到来自 1颗 OneWeb卫星有害干扰概率分布图
  图10 (网络版彩图)O3b星座受到来自 OneWeb星座的有害干扰概率分布图
  图11 (网络版彩图)OneWeb星座可用性概率分布
[1] PARK C S, KANG C G, CHOI Y S, et al. Interference analysis of geostationary satellite networks in the presence of moving non-geostationary satellites[C]//Proceedings of the 20102nd International Conference on Information Technology Convergence and Services. Cebu, Phillippines:IEEE, 2010:1-5.
[2] KOBAYASHI H, SHINONAGA H, ARAKI N, et al. Study on interference between non-GSO MSS gateway station and GSO FSS earth station under reverse band operation[C]//Proceedings of the 10th International Conference on Digital Satellite Communications. Brighton, UK:IET, 1995:282-289.
[3] GAM H, OH D S, AHN D S. Effective method to assess the impact of interference between non-GSO system and fixed service[C]//Proceedings of 2009 International Workshop on Satellite and Space Communications. Tuscany, Italy:IEEE, 2009:206-209.
[4] FORTES J M P, MALDONADO J E A. Protection of fixed service receivers from the interference produced by the non-geostationary satellites in a fixed satellite service network:A statistical interference analysis[J]. International Journal of Satellite Communications, 2002, 20(1):15-27.
[5] FORTES J M P, SAMPAIO-NETO R, MALDONADO J E A. An analytical method for assessing interference in interference environments involving NGSO satellite networks[J]. International Journal of Satellite Communications, 1999, 17(6):399-419.
[6] ITU-R. Analytical method for estimating interference between non-geostationary mobile-satellite feeder links and geostationary fixed-satellite networks operating co-frequency and codirectionally:ITU-R S.1324[S]. Geneva:ITU, 1997.
[7] ITU-R. Artical 21 in radio regulations[R]. Geneva:ITU, 2016.
[8] SHARMA S K, CHATZINOTAS S, OTTERSTEN B. In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites[J]. International Journal of Satellite Communications and Networking, 2016, 34(1):11-39.
[9] VATALARO F, CORAZZA G E, CAINI C, et al. Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading[J]. IEEE Journal on Selected Areas in Communications, 1995, 13(2):291-300.
[10] DESLANDES V, TRONC J, BEYLOT A L. Analysis of interference issues in integrated satellite and terrestrial mobile systems[C]//Proceedings of the 11th Signal Processing for Space Advanced Satellite Multimedia Systems Conference. Cagliari, Italy:IEEE, 2010:256-261.
[11] ITU-R. Coordination of the L5 satellite network in IFIC2809[DB]. (2015-08-12)[2017-05-10]. https://www.itu.int/sns/ific61/ific2809.zip.
[12] ITU-R. Coordination of the O3b-A satellite network in IFIC2644[DB]. (2009-05-19)[2017-05-10]. https://www.itu.int/sns/ific6/ific2644.zip.
[13] ITU-R. Coordination of the O3b-B satellite network in IFIC2693[DB]. (2011-05-03)[2017-05-10]. https://www.itu.int/sns/ific61/ific2693.zip.
[14] ITU-R. Apportionment of the allowable error performance degradations to fixed-satellite service (FSS) hypothetical reference digital paths arising from time invariant interference for systems operating below 30 GHz:ITU-R S.1432-1[S]. Geneva:ITU, 2006.
[1] 靳瑾, 林子翘, 晏坚, 匡麟玲. 计算等效功率通量密度概率分布的方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 172-178.
[2] 易姝娴, 袁立强, 李凯, 沈瑜, 赵争鸣. 面向区域电能路由器的高效仿真建模方法[J]. 清华大学学报(自然科学版), 2019, 59(10): 796-806.
[3] 裴玉奎, 郝浩然, 苏厉. 面向卫星高速数字通信的IQ独立处理基带结构[J]. 清华大学学报(自然科学版), 2018, 58(9): 827-832.
[4] 卓子寒,翟伟明,蔡东阳,王婕,张晓冬,唐劲天. 肿瘤磁感应治疗计划系统适形热疗方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 706-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn