Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (10): 785-795    DOI: 10.16511/j.cnki.qhdxxb.2019.21.024
  专题:电力系统 本期目录 | 过刊浏览 | 高级检索 |
基于三重移相控制的双有源桥DC-DC变换器性能综合优化
谷庆, 袁立强, 赵争鸣, 段任之, 陆子贤
清华大学 电机工程与应用电子技术系, 北京 100084
Performance comprehensive optimization of dual active bridge DC-DC converter based on triple phase shift control
GU Qing, YUAN Liqiang, ZHAO Zhengming, DUAN Renzhi, LU Zixian
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3784 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 双有源桥DC-DC变换器(DAB)在三重移相(TPS)控制下拥有3个独立的控制自由度,通过移相自由度的合理组合可以减小DAB的电流应力,然而软开关分析表明,当DAB的电流应力处于最优状态时,系统的效率并不一定是最优的。该文在电流应力优化控制的基础上,提出一种同时考虑电流应力和效率的DAB性能综合优化方法。首先,基于DAB的开关组合规律建立了TPS控制下DAB的损耗模型,通过换流回路分析,对任意开关组合下功率半导体器件的通态损耗、开关损耗,磁性元件的铜耗和铁耗分别进行计算。在此基础上,引入效率优化权重,构建综合考虑电流应力和效率的优化目标函数,采用二维遍历算法寻优获得DAB综合性能最佳时的工作点。实验对比了单独优化电流应力或者效率时DAB的性能差异,通过合理选择效率优化权重,使得实验样机在传输6 kW功率时的效率绝对增加了0.83%,而电流应力只增加了0.5 A。该方法可以在基本不增加电流应力的前提下,有效提高DAB的效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谷庆
袁立强
赵争鸣
段任之
陆子贤
关键词 双有源桥DC-DC变换器三重移相控制电流应力效率综合优化    
Abstract:There are three independent control degrees of freedom in dual active bridge DC-DC converters (DAB) with triple phase shift (TPS) control. The current stress in a DAB can be reduced by a reasonable combination of changes in the phase shift degrees of freedom. However, soft switching analyses show that the system efficiency is not necessarily optimized when the DAB current stress is optimized. This paper presents a performance comprehensive optimization method that considers both the current stress and the efficiency based on current stress optimization control. Firstly, a DAB loss model for TPS control is developed based on the switching combination laws. A commutation loop analysis is used to separately predict the on-state losses and switching losses of the semiconductor devices and the copper losses and iron losses of the magnetic component for any combination of switches. Then, an efficiency optimization weight is introduced to construct the optimal objective function balancing the current stress and efficiency. A two-dimensional traversal algorithm is then used to optimize the DAB working point. The DAB performance is compared to measurements when the current stress or efficiency is optimized separately. Proper selection of the weight increased the prototype efficiency when transmitting 6 kW by 0.83% with the current stress only increased by 0.5 A. Thus, this method effectively improves the system efficiency without substantially increasing the current stress.
Key wordsdual active bridge DC-DC converter (DAB)    triple phase shift (TPS) control    current stress    efficiency    comprehensive optimization
收稿日期: 2019-03-21      出版日期: 2019-10-14
基金资助:国家自然科学基金重大项目(51490680)
通讯作者: 袁立强,副研究员,E-mail:ylq@tsinghua.edu.cn     E-mail: ylq@tsinghua.edu.cn
引用本文:   
谷庆, 袁立强, 赵争鸣, 段任之, 陆子贤. 基于三重移相控制的双有源桥DC-DC变换器性能综合优化[J]. 清华大学学报(自然科学版), 2019, 59(10): 785-795.
GU Qing, YUAN Liqiang, ZHAO Zhengming, DUAN Renzhi, LU Zixian. Performance comprehensive optimization of dual active bridge DC-DC converter based on triple phase shift control. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 785-795.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.024  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I10/785
  图1 DAB的拓扑结构图
  图2 三重移相控制下模式 D的主要波形
  图3 不同传输功率和电压转换比条件下DAB电流应力最小化时的工作模式
  图4 开关管S 的 ZVS开通过程
  图5 不同传输功率和电压转换比条件下电流应力最优工作点及模式 D的软开关范围
  图6 模式 D下的电流应力最优时的工作点处于软开关状态的范围
  图7 DAB的损耗构成
  图8 模式 D半个周期的模态分析
  表1 模式 D下的通态损耗分布
  表2 模式 D下的各器件的开通和关断情况
  图9 变压器和电感的整体等效电阻随频率变化
  图10 二维遍历算法的程序框图
  图11 UU=500V时效率或电流应力单独优化结果
  图1 2 不同效率优化权重下DAB的性能综合优化结果
  图13 DAB实验平台
  表3 实验平台的关键参数
  图14 (网络版彩图)UU=500V,P=6kW 条件下电流应力和效率单独优化时的实验结果
  图15 不同传输功率下效率或电流应力单独优化时的实验结果
  图16 不同效率优化权重下DAB的综合优化实验结果
[1] ZHAO B, SONG Q, LIU W H, et al. Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system[J]. IEEE Transactions on Power Electronics, 2014, 29(8):4091-4106.
[2] MI C, BAI H, WANG C, et al. Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter[J]. IEEE Transactions on Power Electronics, 2008, 1(4):507-517.
[3] SHI H C, WEN H Q, CHEN J, et al. Minimum-backflow-power scheme of DAB-based solid state transformer with extended-phase-shift control[J]. IEEE Transactions on Industry Applications, 2018, 54(4):3483-3496.
[4] AN F, SONG W S, YU B, et al. Model predictive control with power self-balancing of the output parallel DAB DC-DC converters in power electronic traction transformer[J]. IEEE Transactions on Power Electronics, 2018, 6(4):1806-1818.
[5] TAYLOR A, LIU G L, BAI H, et al. Multiple-phase-shift control for a dual active bridge to secure zero-voltage switching and enhance light-load performance[J]. IEEE Transactions on Power Electronics, 2018, 33(6):4584-4588.
[6] 谷庆, 袁立强, 聂金铜, 等. 基于开关组合规律的双有源桥DC-DC变换器传输功率特性[J]. 电工技术学报, 2017, 32(13):69-79. GU Q, YUAN L Q, NIE J T, et al. Transmission power characteristics of dual-active-bridge DC-DC converter based on the switching combination rules[J]. Transactions of China Electrotechnical Society, 2017, 32(13):69-79. (in Chinese)
[7] ZHAO B, SONG Q, LIU W H. Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control[J]. IEEE Transactions on Power Electronics, 2012, 27(9):4172-4176.
[8] 张勋, 王广柱, 商秀娟, 等. 双向全桥DC-DC变换器回流功率优化的双重移相控制[J]. 中国电机工程学报, 2016, 36(4):1090-1097. ZHANG X, WANG G Z, SHANG X J, et al. An optimized strategy based on backflow power of bi-directional dual-active-bridge DC-DC converters with dual-phase-shifting control[J]. Proceedings of the CSEE, 2016, 36(4):1090-1097. (in Chinese)
[9] LIU X, ZHU Z Q, STONE D A, et al. Novel dual-phase-shift control with bi-directional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control[J]. IEEE Transactions on Power Electronics, 2017, 32(5):4095-4106.
[10] GU Q, YUAN L Q, NIE J T, et al. Current stress minimization of dual-active-bridge DC-DC converter within the whole operating range[J]. IEEE Journal on Emerging and Selected Topics in Power Electronics, 2019, 7(1):129-142.
[11] HOU N, SONG W S, LI Y W, et al. A comprehensive optimization control of dual-active-bridge DC-DC converters based on unified-phase-shift and power-balancing scheme[J]. IEEE Transactions on Power Electronics, 2019, 34(1):826-839.
[12] TONG A P, HANG L J, LI G J, et al. Modeling and analysis of a dual-active-bridge-isolated bidirectional DC/DC converter to minimize RMS current with whole operating range[J]. IEEE Transactions on Power Electronics, 2018, 33(6):5302-5316.
[13] SHA D S, WANG X, CHEN D L, et al. High-efficiency current-fed dual active bridge DC-DC converter with ZVS achievement throughout full range of load using optimized switching patterns[J]. IEEE Transactions on Power Electronics, 2018, 33(2):1347-1357.
[14] RIEDEL J, HOLMES D G, MCGRATH B P, et al. ZVS soft switching boundaries for dual active bridge DC-DC converters using frequency domain analysis[J]. IEEE Transactions on Power Electronics, 2017, 32(4):3166-3179.
[15] SHI H C, WEN H Q, HU Y H, et al. Reactive power minimization in bidirectional DC-DC converters using a unified-phasor-based particle swarm optimization[J]. IEEE Transactions on Power Electronics, 2018, 33(12):10990-11006.
[16] LUO S H, WU F J. Hybrid modulation strategy for IGBT-based isolated dual-active-bridge DC-DC converter[J]. IEEE Journal on Emerging and Selected Topics in Power Electronics, 2018, 6(3):1336-1344.
[17] ZHAO B, SONG Q, LIU W H. Efficiency characterization and optimization of isolated bidirectional DC-DC converter based on dual-phase-shift control for DC distribution application[J]. IEEE Transactions on Power Electronics, 2013, 28(4):1711-1727.
[18] 李婧, 袁立强, 谷庆, 等. 一种基于损耗模型的双有源桥DC-DC变换器效率优化方法[J]. 电工技术学报, 2017, 32(14):66-76. LI J, YUAN L Q, GU Q, et al. An efficiency optimization method in dual active bridge DC-DC converter based on loss model[J]. Transactions of China Electrotechnical Society, 2017, 32(14):66-76. (in Chinese)
[19] ZHAO B, SONG Q, LIU W H, et al. Universal high frequency link characterization and practical fundamental optimal strategy for dual active bridge DC-DC converter under PWM plus phase shift control[J]. IEEE Transactions on Power Electronics, 2015, 30(12):6488-6494.
[20] VILLAR I, VISCARRET U, ETXEBERRIA-OTADUI I, et al. Global loss evaluation methods for nonsinusoidally fed medium-frequency power transformer[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10):4132-4140.
[1] 侯本伟, 游丹, 范世杰, 许成顺, 钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估[J]. 清华大学学报(自然科学版), 2024, 64(3): 509-520.
[2] 曹新颖, 郑德城, 秦培成, 李小冬. 建筑工业噪声对工人学习效率的影响——基于脑电的研究[J]. 清华大学学报(自然科学版), 2024, 64(2): 189-197.
[3] 王钦, 贺迪, 桂良进, 胡智宇, 彭金, 范子杰. 考虑系统变形的驱动桥准双曲面齿轮啮合效率计算方法[J]. 清华大学学报(自然科学版), 2024, 64(1): 33-43.
[4] 李佳龙, 陈永灿, 李永龙, 王皓冉, 谢辉. 泥沙淤积环境下清淤置换模块设计及检测效率分析[J]. 清华大学学报(自然科学版), 2023, 63(7): 1104-1112.
[5] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[6] 王东璞, 王子奇, 刘爽, 蒋林峰, 易磊, 孙超. 复杂边界和极端条件对单相和多相湍流结构和输运的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 758-773.
[7] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[8] 林鹏翥, 娄佳慧, 李建兰, 郝勇. 光谱选择透过性对聚光太阳能热化学循环性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1389-1396.
[9] 王言然, 孔纲强, 沈扬, 孙智文, 王新越, 肖涵宇. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
[10] 刘振, 李清海, 朱群益, 谭中超, 张衍国. 鼓泡塔中SO2和CO2对钴氨络合物脱硝效率的影响[J]. 清华大学学报(自然科学版), 2018, 58(9): 814-820.
[11] 白召乐, 周琦, 杨楠, 刘锋, 杨中建, 陈宝维, 王建龙. 基于波长位移光纤的232Th+ZnS(Ag)闪烁体中子探测器[J]. 清华大学学报(自然科学版), 2018, 58(6): 558-562.
[12] 陈皇卿, 钟晓峰, 王京. 基于能效的单频网广播小区部署优化算法[J]. 清华大学学报(自然科学版), 2018, 58(2): 170-174.
[13] 刘德天, 傅旭东, 王光谦. CFD-DEM耦合计算中的体积分数算法[J]. 清华大学学报(自然科学版), 2017, 57(7): 720-727.
[14] 王力, 杜强, 康克军, 岳骞. 载钆液闪探测器的稳定性测试与探测效率刻度[J]. 清华大学学报(自然科学版), 2017, 57(7): 768-773.
[15] 吴泉源, 彭灿, 郑毅, 卜俊丽. 适用于海量数据应用的多维Hash表结构[J]. 清华大学学报(自然科学版), 2017, 57(6): 586-590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn