Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (10): 807-814    DOI: 10.16511/j.cnki.qhdxxb.2019.21.013
  专题:电力系统 本期目录 | 过刊浏览 | 高级检索 |
用于Boost变换器的无负载电流传感器滑模-预测控制策略
石冰清1, 赵争鸣1, 魏树生1, 聂金铜1, 林云志2
1. 清华大学 电机工程与应用电子技术系, 北京 100084;
2. 中铁电气化局集团有限公司, 北京 100071
Load-current sensorless sliding-predictive control strategies for Boost converters
SHI Bingqing1, ZHAO Zhengming1, WEI Shusheng1, NIE Jintong1, LIN Yunzhi2
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. China Railway Electrification Bureau Group Co., Ltd, Beijing 100071, China
全文: PDF(5719 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 Boost变换器作为升压DC-DC变换器被广泛应用于光伏发电、储能及电动车领域。然而由于Boost变换器的右半平面零点的频域特性,传统的PI控制策略会限制变换器的动态性能,在较大负载突变的情况下造成较大的输出电压波动,进而造成过压或欠压故障;预测控制可以有效提高动态性能、避免调整控制参数以及可增加系统约束,但由于系统参数不匹配及对损耗的忽略会造成输出电压的稳态静差。为了减小负载突变带来的电压波动同时兼顾稳态特性,本文提出了无负载电流传感器的滑模-预测控制策略,外环采用滑模面生成电感电流指令值,内环采用无差拍预测控制,并使用了滑模观测器来观测电流。该控制策略不需要负载电流传感器,相比PI控制器,不仅可以同时减小负载突变时的输出电压波动和过渡时间,还可以有效限制稳态静差。实验验证了该套控制策略的性能优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石冰清
赵争鸣
魏树生
聂金铜
林云志
关键词 电压波动过渡时间稳态静差滑模-预测控制Boost变换器    
Abstract:Boost converters are widely used for photovoltaic power generation, energy storage and electric vehicles. However, since the right half plane of the Boost converter is zero in the frequency domain, traditional PI control algorithms for the converter have serious dynamic response limitations which can result in large output voltage fluctuations leading to over or under voltage faults during fast transitions with large load changes. Predictive control can improve the dynamic response and avoid control parameter tuning with additive system constraints, but predictive control can lead to output voltage errors at steady state. A load-current sensorless sliding-mode-predictive control algorithm was developed here to reduce the output voltage fluctuations during sudden load transitions while also maintaining the proper steady-state characteristics. The outer loop uses a sliding surface to generate the inductor current reference while the inner loop with a deadbeat predictive control regulates the inductor current. The load current is estimated by a sliding mode observer. This control algorithm reduces the output voltage fluctuations during load transitions and the transition times. The algorithm also limits the output voltage errors at steady state. In addition, the algorithm does not require a load current sensor. Tests with a Boost converter confirm the effectiveness of this control strategy.
Key wordsvoltage fluctuations    transition time    steady state error    sliding-mode-predictive control    Boost converter
收稿日期: 2019-01-14      出版日期: 2019-10-14
基金资助:国家自然科学基金重大项目(51490680)
通讯作者: 赵争鸣,教授,zhaozm@tsinghua.edu.cn     E-mail: zhaozm@tsinghua.edu.cn
引用本文:   
石冰清, 赵争鸣, 魏树生, 聂金铜, 林云志. 用于Boost变换器的无负载电流传感器滑模-预测控制策略[J]. 清华大学学报(自然科学版), 2019, 59(10): 807-814.
SHI Bingqing, ZHAO Zhengming, WEI Shusheng, NIE Jintong, LIN Yunzhi. Load-current sensorless sliding-predictive control strategies for Boost converters. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 807-814.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.013  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I10/807
  图1 本文提出的控制策略框架
  图2 Boost变换器
  图3 考虑一拍延迟的无差拍控制
  图4 (网络版彩图)因电感电流指令值误差和内环静差造成的输出电压静差
  图5 整套控制策略
  图6 (网络版彩图)本文控制策略的输出电压稳态静差
  图7 (网络版彩图)稳定性分析
  图8 (网络版彩图)负载观测器仿真结果
  图9 (网络版彩图)滑模 预测控制与PI控制的仿真结果
  表1 仿真和实验平台电路和电气参数
  图10 (网络版彩图)实验平台
  图11 滑模-预测控制: 负载突增突减波形
  图12 PI控制: 负载突增突减波形
[1] YAO C, RUAN X B, CAO W J, et al. A two-mode control scheme with input voltage feed-forward for the two-switch Buck-Boost DC-DC converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4):2037-2048.
[2] OUCHERIAH S, GUO L. PWM-based adaptive sliding-mode control for Boost DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8):3291-3294.
[3] PANDEY S K, PATIL S L, PHADKE S B. Comment on "PWM-based adaptive sliding-mode control for Boost DC-DC converters"[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6):5078-5080.
[4] GE J J, YUAN L Q, ZHAO Z M. Energy-balance based prediction for Boost converters[J]. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE ASIA). Hefei, China:IEEE, 2016:1190-1194.
[5] SHI B Q, ZHAO Z M, LI J, et al. Energy balanced design and control for converters with natural trajectory tracking[C]//International Conference on Electrical Machines and Systems (ICEMS). Sydney, Australia:IEEE, 2017:1-5.
[6] NAIM R, WEISS G, BENYAAKOV S S. H-infinity control applied to Boost power converters[J]. IEEE Transactions on Power Electronics, 1997, 12(4):677-683.
[7] KARAMANAKOS P, GEYER T, MANIAS S. Direct model predictive current control strategy of DC-DC Boost converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(4):337-346.
[8] KARAMANAKOS P, GEYER T, MANIAS S. Direct voltage control of DC-DC Boost converters using enumeration-based model predictive control[J]. IEEE Transactions on Power Electronics, 2014, 29(2):968-978.
[9] OETTMEIER F M, NEELY J, PEKAREK S, et al. MPC of switching in a Boost converter using a hybrid state model with a sliding mode observer[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9):3453-3466.
[10] ZHANG Y C, XIE W, LI Z X, et al. Model predictive direct power control of a PWM rectifier with duty cycle optimization[J]. IEEE Transactions on Power Electronics, 2013, 28(11):5343-5351.
[11] ZHANG Y, PENG Y B, YANG H T. Performance improvement of two-vectors-based model predictive control of PWM rectifier[J]. IEEE Transactions on Power Electronics, 2016, 31(8):6016-6030.
[12] YANG H T, ZHANG Y C, LIANG J J Y, et al. Sliding-mode observer based voltage-sensorless model predictive power control of PWM rectifier under unbalanced grid conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5550-5560.
[13] BECCUTI A G, MARIETHOZ S, CLIQUENNOIS S, et al. Explicit model predictive control of DC-DC switched-mode power supplies with extended Kalman filtering[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6):1864-1874.
[14] CHEN J Q, PRODIC A, ERICKSON R W, et al. Predictive digital current programmed control[J]. IEEE Transactions on Power Electronics, 2003, 18(12):411-419.
[15] MATTAVELLI P, SPIAZZI G, TENTI P. Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers[J]. IEEE Transactions on Power Electronics, 2005, 20(1):140-147.
[16] BUSO S, CALDOGNETTO T, BRANDAO D I. Dead-beat current controller for voltage-source converters with improved large-signal response[J]. IEEE Transactions on Industry Applications, 2016, 52(2):1588-1596.
[17] KELLY A, RINNE K. Sensorless current-mode control of a digital dead-beat DC-DC converter[C]//Annual IEEE Conference on Applied Power Electronics Conference and Exposition (APEC). New York, USA:IEEE, 2004:1790-1795.
[18] CHENG L, ACUNA P, AGUILERA R P, et al. Model predictive control for DC-DC Boost converters with reduced-prediction horizon and constant switching frequency[J]. IEEE Transactions on Power Electronics, 2018, 33(10):9064-9075.
[19] SAGGINI S, STEFANUTTI W, TEDESCHI E, et al. Digital deadbeat control tuning for DC-DC converters using error correlation[J]. IEEE Transactions on Power Electronics, 2007, 22(4):1566-1570.
[20] 贾志东, 姜久春, 程龙, 等. 适用于Boost变换器的自适应模型预测控制算法[J]. 中国电机工程学报, 2018, 38(19):5838-5845.JIA Z D, JIANG J C, CHENG L, et al. An adaptive model predictive control for DC-DC Boost converters[J]. Proceedings of the CSEE, 2018, 38(19):5838-5845. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn