Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (2): 122-128    DOI: 10.16511/j.cnki.qhdxxb.2018.26.052
  物理与物理工程 本期目录 | 过刊浏览 | 高级检索 |
面向社区风险防范的大数据平台理论架构设计
贾楠1, 郭旦怀2, 陈永强3, 刘奕1
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 中国科学院计算机网络信息中心, 北京 100019;
3. 北京大学 工学院, 力学与工程科学系, 北京 100871
Theoretical architecture design of a community risk prevention big data platform
JIA Nan1, GUO Danhuai2, CHEN Yongqiang3, LIU Yi1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100019, China;
3. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
全文: PDF(1098 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 社区是公共安全治理的基本单元,社区安全研究意义重大。该文面向社区风险防范的重大需求,首先,从人、物及管理3个角度厘清社区风险的来源,剖析社区风险的特性及原因;然后,阐述社区风险防范的内涵,提出监测监控、预测预警和智能防范是社区风险防范的关键技术,在综合分析当前风险防范研究现状及发展趋势的基础上,指出大数据平台是社区风险防范的基础支撑;最后,分别从功能、结构及构建流程3个层面展开面向社区风险防范大数据平台的理论架构设计。为社区风险防范及大数据平台的基础理论研究大数据平台搭建及风险防范提供理论和技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾楠
郭旦怀
陈永强
刘奕
关键词 社区风险风险防范关键技术大数据平台理论架构设计    
Abstract:Since communities are the basic units for public safety management, community risk prevention is of great significance. Community risk prevention must first identify community risks for people, things and management. This study analyzed the characteristics and causes of community risk to identify community risk prevention methods and how to monitor, control, predict, quickly detect and prevent community risk. Current international development trends for community risk prevention are reviewed to show that big data platforms are the key technology for community risk prevention. Finally, this paper describes the function, structure and construction of a large data platform for community risk prevention. This research on community risk prevention and big data platforms provides theoretical and technical support for community safety and security.
Key wordscommunity risk    risk prevention    key technologies    large data platform    theoretical architecture design
收稿日期: 2018-06-11      出版日期: 2019-02-16
基金资助:国家重点研发计划项目(2017YFC0803300);国家自然科学基金资助项目(71673158,91646101,1324022,91646201)
引用本文:   
贾楠, 郭旦怀, 陈永强, 刘奕. 面向社区风险防范的大数据平台理论架构设计[J]. 清华大学学报(自然科学版), 2019, 59(2): 122-128.
JIA Nan, GUO Danhuai, CHEN Yongqiang, LIU Yi. Theoretical architecture design of a community risk prevention big data platform. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 122-128.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.052  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I2/122
  图1 社区风险防范关键技术
  表1 社区风险的特性、 表现及原因
  图2 大数据平台与风险防范关键技术数据交互关系
  图3 社区风险防范大数据平台结构图
  图4 社区风险防范大数据平台构建流程
[1] WEBSTER C J, GLASZE G, FRANTZ K. The global spread of gated communities[J]. Environment and Planning B:Planning and Design, 2002, 29(3):315-320.
[2] BLANDY S. Fear of crime and of anti-social behaviour and their relation to the spread of residential gated communities in England[J]. Deviance et Societe, 2009, 33(4):557-572.
[3] PATTERSON E B. Poverty, income inequality, and community crime rates[J]. Criminology, 1991, 29(4):755-776.
[4] PITTS J. Crime Prevention and community safety:New directions[J]. Safer Communities, 2012, 1(2):46-48.
[5] WANG Y. The Development of wireless personnel positioning in Internet of Things based on ZigBee and sensors[J]. International Journal of Digital Content Technology and Its Applications, 2012, 6(12):47-54.
[6] BOUCHRIKA I, Carter J N, Nixon M S. Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras[J]. Multimedia Tools and Applications, 2016, 75(2):1201-1221.
[7] MAO G Q, FIDAN B, Anderson B D O. Wireless sensor network localization techniques[J]. Computer Networks, 2007, 51(10):2529-2553.
[8] BATISTA N C, MELICIO R, MATIAS J C O, et al. Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid[J]. Energy, 2013, 49:306-315.
[9] KOVALENKO V, YAROVOY A, LIGTHART L P. Waveform based detection of anti-personnel mines with an UWB radar[C]//Proceedings of 2005 IEEE International Conference on Ultra-Wideband. Zurich, Switzerland:IEEE, 2005:644-649.
[10] JOHANSEN I. Scenario modelling with morphological analysis[J]. Technological Forecasting and Social Change, 2018, 126:116-125
[11] JUN S P, YOO H S, CHOI S. Ten years of research change using Google Trends:From the perspective of big data utilizations and applications[J]. Technological Forecasting and Social Change, 2018, 130:69-87.
[12] GUPTA R, GUPTA H, MOHANNIA M. Cloud computing and big data analytics:What is new from databases perspective?[M]//SRINIVASA S, BHATNAGAR V. Big Data Analytics. Berlin Heidelberg:Springer, 2012.
[13] GUO D H, Du Y. A visualization platform for spatio-temporal data:A data intensive computation framework[C]//Proceedings of 201523rd International Conference on Geoinformatics. Wuhan, China:IEEE, 2016:1-6.
[14] ZHANG F, ZHOU Z, XU W J, et al. Cloud manufacturing resource service platform based on intelligent perception network using fiber optic sensing[J]. International Journal on Advances in Information Sciences and Service Sciences, 2012, 4(23):366-372.
[15] ALEXANDROV A, BERGMANN R, EWEN S, et al. The stratosphere platform for big data analytics[J]. The Vldb Journal, 2014, 23(6):939-964.
[16] GULISANO V, JIMENEZ P R, PATIÑO-MARTINEZ M, et al. A big data platform for large scale event processing[J]. ERCIM News, 2012(89):2.
[17] COMES T, WIJNGAARDS N, VAN DE WALLE B. Exploring the future:Runtime scenario selection for complex and time-bound decisions[J]. Technological Forecasting and Social Change, 2015, 97:29-46.
[18] LEWIS A, OLIVER S, LVMBURNER L, et al. The Australian geoscience data cube-Foundations and lessons learned[J]. Remote Sensing of Environment, 2017, 202:276-292.
[19] PHAN N, DOU D J, WANG H, et al. Ontology-based deep learning for human behavior prediction with explanations in health social networks[J]. Information Sciences, 2017, 384:298-313.
[20] RIZZOLI A E, DONATELLI M, ATHANASIADIS I N, et al. Semantic links in integrated modelling frameworks[J]. Mathematics and Computers in Simulation, 2008, 78(2-3):412-423.
[21] IVER B, SHANKARANARAYANAN G, LENARD M L. Model management decision environment:A Web service prototype for spreadsheet models[J]. Decision Support Systems, 2005, 40(2):283-304.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn