Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (3): 203-210    DOI: 10.16511/j.cnki.qhdxxb.2018.26.045
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
异方差加噪下差分隐私流数据发布一致性优化算法
孙岚, 康健, 吴英杰, 张立群
福州大学 数学与计算机科学学院, 福州 350116
Consistency optimization algorithm for differential privacy streaming data publication with non-uniform private budgets
SUN Lan, KANG Jian, WU Yingjie, ZHANG Liqun
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
全文: PDF(1333 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 现有基于树结构的差分隐私流数据统计发布方法未能充分利用统计查询可能存在的特定分布规律而进一步提升发布流数据的精度,为此,该文提出滑动窗口下基于异方差加噪的差分隐私流数据发布算法。首先动态构建滑动窗口内流数据对应的差分隐私区间树;其次根据统计查询分布规律计算树节点的覆盖概率,据此对树节点的隐私预算及树结构参数进行调整,以实现异方差加噪;最后,针对异方差加噪后区间树节点值可能不满足一致性约束的问题,设计实时的一致性调节策略。实验结果表明:与同类算法相比,该算法具有较高的查询精度及算法效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙岚
康健
吴英杰
张立群
关键词 差分隐私流数据发布滑动窗口异方差加噪一致性约束    
Abstract:Most existing methods for differential privacy streaming data statistical release based on tree structures cannot take advantage of the special probability distributions in statistical queries. This study presents an algorithm that further boosts the accuracy of the released streaming data for differential privacy streaming data publication with non-uniform private budgets using sliding windows. After constructing the differential privacy range tree for the streaming data within the sliding window, the algorithm calculates the coverage probability of the tree nodes according to the probability distribution of the statistical queries and then adds non-uniform noise to the tree nodes based on the adjusted privacy budget of the tree nodes and a tree structure parameter. Finally, several real-time adjustment policies are designed to ensure that the node values on any path from the root to the leaves satisfy a consistency constraint. Tests show that the algorithm guarantees better statistical query accuracy and has higher algorithm efficiency than traditional algorithms.
Key wordsdifferential privacy    streaming data release    sliding window    non-uniform privacy budget    consistency constraint
收稿日期: 2018-07-06      出版日期: 2019-03-19
基金资助:国家自然科学基金资助项目(61300026);福建省自然科学基金资助项目(2017J01754,2018J01797)
引用本文:   
孙岚, 康健, 吴英杰, 张立群. 异方差加噪下差分隐私流数据发布一致性优化算法[J]. 清华大学学报(自然科学版), 2019, 59(3): 203-210.
SUN Lan, KANG Jian, WU Yingjie, ZHANG Liqun. Consistency optimization algorithm for differential privacy streaming data publication with non-uniform private budgets. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 203-210.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.045  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I3/203
  图1 滑动窗口内差分隐私区间树的构建
  图2 算法1
  图3 算法2
  图4 算法3
  图5 差分隐私区间树参数调节
  图6 算法4
  图7 算法5
  图8 算法6
  表1 实验数据集
  图9 不同区间大小下的查询误差对比(Search Logs)
  图10 不同区间大小下的查询误差对比(Nettrace)
  图11 不同区间大小下的查询误差对比 (WorldCup98)
  图12 不同查询规律下的查询误差对比(Search Logs)
  图13 不同查询规律下的查询误差对比(Nettrace)
  图14 不同查询规律下的查询误差对比(WorldCup98)
  图15 流数据动态发布过程中查询误差对比(WorldCup98)
  图1 6 不同大小隐私参数对运行效率的影响
  图1 7 一致性约束条件下优化过程对运行效率的影响
[1] FUNG B C M, WANG K, CHEN R, et al. Privacy-preserving data publishing:A survey of recent developments[J]. ACM Computing Surveys, 2010, 42(4):14.
[2] DWORK C, NAOR M, PITASSI T, et al. Differential privacy under continual observation[C]//Proceedings of the 42nd ACM Symposium on Theory of Computing. Cambridge, Massachusetts, New York, USA:ACM, 2010:715-724.
[3] CHAN T H H, SHI E, SONG D. Private and continual release of statistics[J]. ACM Transactions on Information and System Security, 2011, 14(3):1-24.
[4] CAO J N, XIAO Q, GHINITA G, et al. Efficient and accurate strategies for differentially-private sliding window queries[C]//Proceedings of the 16th International Conference on Extending Database Technology. Genoa, Italy:ACM, 2013:191-202.
[5] BOLOT J, FAWAZ N, MUTHUKRISHNAN S, et al. Private decayed predicate sums on streams[C]//Proceedings of the 16th International Conference on Database Theory. Genoa, Italy:ACM, 2013:284-295.
[6] 张啸剑, 孟小峰. 基于差分隐私的流式直方图发布方法[J]. 软件学报, 2016,27(2):381-393.ZHANG X J, MENG X F. Streaming histogram publication method with differential privacy[J]. Journal of Software, 2016, 27(2):381-393.(in Chinese)
[7] KELLARIS G, PAPADOPOULOS S, XIAO X K, et al. Differentially private event sequences over infinite streams[J]. Proceedings of the VLDB Endowment, 2014, 7(12):1155-1166.
[8] CHAN T H H, LI M F, SHI E, et al. Differentially private continual monitoring of heavy hitters from distributed streams[C]//Proceedings of the 12th International Symposium on Privacy Enhancing Technologies. Vigo, Spain:Springer, 2012:140-159.
[9] WANG J, ZHU R B, LIU S B. A differentially private unscented Kalman filter for streaming data in IoT[J]. IEEE Access, 2018, 6:6487-6495.
[10] CHEN Y, MACHANAVAJJHALA A, HAY M, et al. PeGaSus:Data-adaptive differentially private stream processing[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas, Texas, USA:ACM, 2017:1375-1388.
[11] DWORK C. Differential privacy[C]//Proceedings of the 33rd International Colloquium on Automata, Languages and Programming. Venice, Italy:Springer, 2006:1-12.
[12] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//Proceedings of the 3rd Theory of Cryptography Conference on Theory of Cryptography. New York, USA:Springer, 2006:265-284.
[13] 周水庚, 李丰, 陶宇飞, 等. 面向数据库应用的隐私保护研究综述[J]. 计算机学报, 2009, 32(5):847-861.ZHOU S G, LI F, TAO Y F, et al. Privacy preservation in database application:A survey[J]. Chinese Journal of Computers, 2009, 32(5):847-861.(in Chinese)
[14] HAY M, RASTOGI V, MIKLAU G, et al. Boosting the accuracy of differentially private histograms through consistency[J]. Proceedings of the VLDB Endowment, 2010, 3(1-2):1021-1032.
[15] 康健, 吴英杰, 黄泗勇, 等. 异方差加噪下的差分隐私直方图发布算法[J]. 计算机科学与探索, 2016, 10(6):786-798.KANG J, WU Y J, HUANG S Y, et al. Algorithm for differential privacy histogram publication with non-uniform private budget[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6):786-798. (in Chinese)
[1] 高志强, 崔翛龙, 杜波, 周沙, 袁琛, 李爱. 满足本地差分隐私的位置数据采集方案[J]. 清华大学学报(自然科学版), 2019, 59(1): 23-27.
[2] 韩东红, 宋明, 张宏亮, 王佳茜, 王嘉兴, 王国仁. 基于密度的不确定数据流聚类算法[J]. 清华大学学报(自然科学版), 2017, 57(8): 884-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn