Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (3): 219-227    DOI: 10.16511/j.cnki.qhdxxb.2018.26.055
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
波形套的轴向受压分析与优化设计
桂良进, 朱升发, 陈伟博, 周驰, 范子杰
清华大学 汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084
Structure analysis and optimal design of corrugated cylindrical shells undergoing axial compression
GUI Liangjin, ZHU Shenfa, CHEN Weibo, ZHOU Chi, FAN Zijie
State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(6360 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 波形套是一种两端为直壁段、中部为外凸波形区的回转圆柱壳体结构。其轴向压力-轴向压缩位移曲线具有明显的平台段,波形套常被用于轴承的预紧、冲击吸能等。因此,波形套的轴向特性研究具有重要的工程意义。该文利用有限元软件对波形套轴向压缩的工况进行了有限元模拟,得到了轴向力-位移曲线,讨论了波形套的几何参数对其轴向特性的影响;并通过轴向压缩实验与数值计算对比,对有限元模型进行检验。最后,在有限元计算的基础上,基于第二代非劣排序遗传算法对波形套的几何参数进行了多目标优化设计,最小化等效塑性应变和最大化轴向力平台的宽度,得到了多目标优化的Pareto解集,为波形套设计优化的工程应用奠定了良好的基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂良进
朱升发
陈伟博
周驰
范子杰
关键词 波形套轴承预紧轴向力平台结构分析多目标优化    
Abstract:Corrugated sleeves are cylindrical shells with a special bulge in the central region, which are also called corrugated sleeves in automotive engineering. Both ends of the corrugated sleeve are straight. Corrugated sleeves have a distinct flat region in their axial force-compressive displacement curves. Corrugated sleeves with this axial load characteristic are used to preload bearings and absorb energy. Therefore, the axial characteristics are quite important in many designs. The axial compression of a corrugated sleeve was simulated here using the finite element method in ABAQUS with the results verified against tests. The axial force-displacement curves were predicted for various parameters to analyze the influence of the geometric parameters on the axial load characteristics. The FEA results were then used with multi-objective optimization to minimize the maximum equivalent plastic strain and maximize the platform width using the Non-dominated Sorting Genetic Algorithm Ⅱ. This method can be used to optimize the designs of corrugated sleeves for various conditions.
Key wordscorrugated sleeve    bearing preload    axial force platform    structural analysis    multi-objective optimization
收稿日期: 2018-07-10      出版日期: 2019-03-19
基金资助:清华大学校企合作项目(20182000839)
引用本文:   
桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
GUI Liangjin, ZHU Shenfa, CHEN Weibo, ZHOU Chi, FAN Zijie. Structure analysis and optimal design of corrugated cylindrical shells undergoing axial compression. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 219-227.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.055  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I3/219
  图1 波形套结构
  表1 波形套的尺寸参数
  表2 材料数据
  图2 (网络版彩图)波形套轴向受压的轴对称有限元模型
  图3 波形套的轴向压力 轴向压缩量曲线
  图4 (网络版彩图)轴向应力及等效塑性应变云图
  图5 最大轴向力与厚度的关系
  图6 压缩实验
  图7 实验轴向力-位移曲线
  图8 实验与有限元计算轴向力-位移曲线
  表3 因子水平
  图9 (网络版彩图)最大塑性应变的主效应图
  图1 0 (网络版彩图)轴向力平台宽度的主效应图
  表4 设计变量的上下限值
  图 1 1 优化解集
  表5 部分 Pareto最优解
  表6 有限元结果与响应面对比
  图1 2 波形套多目标优化流程图
[1] LIU Y, MONKABA V D. Forming simulation and stiffness prediction of a rear axle pinion bearing collapsible spacer[J/OL]. (2001-11-12)[2017-04-26]. http://papers.sae.org/2001-01-2803/.
[2] QI Y M, ZHU X Z, DENG S P, et al. Research on spindle bearing pretightening based on spacer sleeve adjustment[J]. Applied Mechanics and Materials, 2014, 488-489:1087-1090.
[3] 陈家瑞. 汽车构造(下册)[M]. 3版. 北京:机械工业出版社, 2009.CHEN J R. Automative structure (Part 2).[M]. 3rd ed. Beijing:Machiary industry Press, 2009. (in Chinese)
[4] 钱伟长, 郑思梁. 轴对称园环壳的复变量方程和轴对称细环壳的一般解[J]. 清华大学学报(自然科学版), 1979(1):27-47.QIAN W Z, ZHENG S L. Equattions of symmetrical ring shells in complex quantities and their general solutions for slender ring shells[J]. Journal of Tsinghua University (Science and Technology), 1979(1):27-47. (in Chinese)
[5] 钱伟长. 半圆弧波纹管的计算——细环壳理论的应用[J]. 清华大学学报(自然科学版), 1979(1):84-99.QIAN W Z. Calculation for semi-circular arc type corrugated tube-applications of the theory of slender ring shells[J]. Journal of Tsinghua University (Science and Technology), 1979(1):84-99. (in Chinese)
[6] 朱卫平, 黄黔. 中细柔性圆环壳整体弯曲的一般解及在波纹管计算中的应用(Ⅳ)-型波纹管的计算[J]. 应用数学和力学, 2002, 23(10):1035-1040.ZHU W P, HUANG Q. General solution of the overall bending of flexible circular ring shells with moderately slender ratio and applications to the bellow(IV)-calculation for U-shaped bellow[J]. Applied Mathematics and Mechanics, 2002, 23(10):1035-1040. (in Chinese)
[7] 王连东, 彭加耕, 刘助柏, 等. 汽车波形套复合缩径-胀形变形分析与求解[J]. 机械工程学报, 2002, 38(5):149-152.WANG L D, PENG J G, LIU Z B, et al. Deformation analysis and calculation of automobile corrugated sleeve by combined sinking-bulging technology[J]. Chinese Journal of Mechanical Engineering, 2002, 38(5):149-152. (in Chinese)
[8] 王连东, 邱兰芳, 刘敏. 波形套工作特性的理论与试验研究[J]. 机械工程学报, 2005, 41(11):184-188.WANG L D, QIU L F, LIU M. Theoretical and experimental research on corrugated sleeve's working characteristics[J]. Journal of Mechanical Engineering, 2005, 41(11):184-188. (in Chinese)
[9] SINGACE A A, EL-SOBKY H. Behaviour of axially crushed corrugated tubes[J]. International Journal of Mechanical Sciences, 1997, 39(3):249-261.
[10] GHAZIJAHANI T G, DIZAJI H S, NOZOHOR J, et al. Experiments on corrugated thin cylindrical shells under uniform external pressure[J]. Ocean Engineering, 2015, 106:68-76.
[11] 余显忠, 黄平辉, 揭钢, 等. 弹性隔套设计与仿真分析[J]. 现代制造工程, 2010(3):1-4.YU X Z, HUANG P H, JIE G, et al. Design and simulation analysis of the elastic sleeve[J]. Modern Manufacturing Engineering, 2010(3):1-4. (in Chinese)
[12] 张平, 马建, 那景新. 波纹管耐撞性的多目标优化[J]. 振动与冲击, 2015, 34(15):12-16.ZHANG P, MA J, NA J X. Multi-objective optimization for crashworthiness of corrugated tubes[J]. Journal of Vibration and Shock, 2015, 34(15):12-16. (in Chinese)
[13] WU S Y, LI G Y, SUN G Y, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube[J]. Thin-Walled Structures, 2016, 105:121-134.
[14] YANG Z X, YAN J, CHEN J L, et al. Multi-objective shape optimization design for liquefied natural gas cryogenic helical corrugated steel pipe[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(5), 051703.
[15] ANDRIANOV I I, AWREJCEWICZ J, DISKOVSKY A A. Optimal design of a functionally graded corrugated cylindrical shell subjected to axisymmetric loading[J]. Archive of Applied Mechanics, 2018(7):1-13.
[16] 桂良进, 范子杰, 王青春. 泡沫填充圆管的动态轴向压缩吸能特性[J]. 清华大学学报(自然科学版), 2004, 44(5):709-712.GUI L J, FAN Z J, WANG Q C. Energy-absorption properties of foam-filled circular tubes subjected to dynamic axial crushing[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(5):709-712. (in Chinese)
[17] 桂良进, 范子杰, 王青春. 泡沫填充圆管的轴向压缩能量吸收特性[J]. 清华大学学报(自然科学版), 2003, 43(11):1526-1529.GUI L J, FAN Z J, WANG Q C. Energy-absorption properties of foam-filled circular tubes subjected to axial crushing[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(11):1526-1529. (in Chinese)
[18] 刘文卿. 试验设计[M]. 北京:清华大学出版社, 2005.LIU W Q. Test design[M]. Beijing:Tsinghua University Press, 2005. (in Chinese)
[19] FRENCH M. Fundamentals of optimization[M]. New York:Springer, 2018.
[20] DEB K, PRATAP A, AGARWAL S, et al. A fast elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2000, 6(2):182-197.
[21] DEB K, AGRAWA R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1994, 9(3):115-148.
[1] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[2] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[3] 檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣. 多接收端无线电能传输系统动态特性分析及多目标参数优化[J]. 清华大学学报(自然科学版), 2021, 61(10): 1066-1078.
[4] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[5] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[6] 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn