Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (3): 236-242    DOI: 10.16511/j.cnki.qhdxxb.2019.21.002
  精密仪器与机械学 本期目录 | 过刊浏览 | 高级检索 |
面向感知微系统的系统级设计方法
张益源1,2, 赵嘉昊1,2, 尤政1,2
1. 清华大学 精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084;
2. 清华大学 北京市未来芯片技术高精尖创新中心, 北京 100084
General design method for micro sensing systems
ZHANG Yiyuan1,2, ZHAO Jiahao1,2, YOU Zheng1,2
1. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2. Beijing Innovation Center for Future Chip, Tsinghua University, Beijing 100084, China
全文: PDF(3344 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 作为传感器系统的典型代表与技术发展趋势,感知微系统具有尺寸小、功能多与自供电等优势。然而当前的设计方法无法平衡其实用性能与约束性能之间的矛盾,使得其进一步发展陷入瓶颈。该文基于多学科设计优化思想提出一种针对感知微系统的系统级设计方法。该方法根据设计目标与各性能边界条件进行学科划分,在子系统分析器内进行参数分析后代入系统级优化器完成目标优化,最终实现感知微系统的优化设计。以重型车辆检测微系统为例,选取不同的设计目标进行系统级优化,并通过叠层集成的方式研制了验证样机。样机的性能测试结果与设计值相符,且满足优化设计目标的需求。该方法可行性和准确性表明,其能够在设计阶段平衡感知微系统的实用性能与约束性能,实现系统的最优化设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张益源
赵嘉昊
尤政
关键词 感知微系统多学科设计优化系统级设计方法    
Abstract:Micro sensing systems will be widely used in the future because they are small, multifunctional and self-powered. However, current designs do not balance their performance with key constraints which limits their further development. This paper presents a general design method for micro sensing systems based on multidisciplinary design optimization. The method facilitates optimization of micro sensing systems by analyzing the parameters in various subspaces to optimize the design. Vehicle detection micro-systems are used as an example with various optimization design targets for the prototypes. The test results coincide well with the design predictions and meet the design requirements. The method accuracy shows that it balances performance requirements with systems constraints during the design process to optimize the system.
Key wordsmicro sensing systems    multidisciplinary design optimization    general design method
收稿日期: 2018-09-25      出版日期: 2019-03-19
基金资助:国家自然科学基金面上项目(61774096)
引用本文:   
张益源, 赵嘉昊, 尤政. 面向感知微系统的系统级设计方法[J]. 清华大学学报(自然科学版), 2019, 59(3): 236-242.
ZHANG Yiyuan, ZHAO Jiahao, YOU Zheng. General design method for micro sensing systems. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 236-242.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.002  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I3/236
  图1 系统组成框图
  图2 系统设计框架
  表1 重型车辆检测系统样机设计任务
  表2 样机的参数设计结果
  图3 样机集成流程图
  图4 样机传感结果例图
  图5 样机实物图
  表3 4套样机尺寸的设计值与实测值对比
  表4 4套样机通信距离的设计值与实测值对比
  表5 4套样机工作时间的设计值与实测值对比
  图6 样机3、4工作时间数据记录
  表6 样机的参数实测结果
[1] Lee Y, Bang S, Lee I, et al. A modular 1 mm die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting[J]. IEEE Journal of Solid-State Circuits, 2013, 48(1):229-243.
[2] Kim G, Lee Y, Foo Z, et al. A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting[C]//2014 Symposium on VLSI Circuits Digest of Technical Papers. Honolulu, HI, USA:IEEE, 2014:1-2.
[3] Farshchi S, Nuyujukian P H, Pesterev A, et al. A TinyOS-based wireless neural sensing, archiving, and hosting system[C]//The 2nd International IEEE EMBS Conference on Neural Engineering, 2005. Arlington, VA, USA:IEEE, 2005:671-674.
[4] Polastre J, Szewczyk R, Culler D. Telos:Enabling ultra-low power wireless research[C]//Fourth International Symposium on Information Processing in Sensor Networks, 2005. Boise, ID, USA:IEEE, 2005:364-369.
[5] Jeong S, Foo Z, Lee Y, et al. A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes[J]. IEEE Journal of Solid-State Circuits, 2014, 49(8):1682-1693
[6] Oh S, Lee Y, Wang J, et al. A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system[J]. IEEE Journal of Solid-State Circuits, 50(7):1581-1591.
[7] Sobieszczanski-Sobieski J, Chopra I. Multidisciplinary optimization of aeronautical systems[J]. Journal of Aircraft, 1990, 27(12):977-978.
[8] Braun R, Gage P, Kroo I, et al. Implementation and performance issues in collaborative optimization[C]//The 6th Symposium on Multidisciplinary Analysis and Optimization. Bellevue, WA, USA:AIAA, 1996:4017.
[9] Alexandrov N M, Lewis R M. Comparative properties of collaborative optimization and other approaches to MDO[J/OL].[1999-07-01]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990064129.pdf
[10] Lau J H, Yue T G. Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP)[J]. Microelectronics Reliability, 2012, 52(11):2660-2669.
[11] Seybold J S. Introduction to RF propagation[M]. Hoboken John Wiley & Sons, 2005.
[12] Jones A D, Underwood C P. A thermal model for photovoltaic systems[J]. Solar Energy, 2001, 70(4):349-359.
[13] Gualous H, Louahlia H, Gallay R. Supercapacitor characterization and thermal modelling with reversible and irreversible heat effect[J]. IEEE Transactions on power electronics, 2011, 26(11):3402-3409.
[14] Versfeld N J, Vos J. Annoyance caused by sounds of wheeled and tracked vehicles[J]. The Journal of the Acoustical Society of America, 1997, 101(5):2677-2685.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn