Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (5): 364-372    DOI: 10.16511/j.cnki.qhdxxb.2018.25.056
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
长江口影响水资源承载力关键指标与临界条件
徐志1,2, 马静2, 王浩1,2, 赵建世1, 胡雅杰2, 杨贵羽2
1. 清华大学 水利水电工程系, 北京 100084;
2. 中国水利水电科学研究院, 北京 100038
Key indicator and critical condition for the water resource carrying capacity in the Yangtze River Estuary
XU Zhi1,2, MA Jing2, WANG Hao1,2, ZHAO Jianshi1, HU Yajie2, YANG Guiyu2
1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China;
2. China Institute of Water Resources and Hydropower Research, Beijing 100038, China
全文: PDF(6587 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中国幅员辽阔,区域气象水文条件差异极大,社会经济发展不均衡,水资源问题极其复杂。因此,需根据不同水文分区,明确区域的水资源问题,识别区域水资源承载力的制约要素,提出物理机制明确且能反映水文机理的影响承载力关键指标及其对应的临界条件。该文以长江口为例,从问题产生的机理出发,识别出入海径流为河口水资源承载力的关键指标和水文要素,提出定值方法,结合动力学模型模拟长江口盐度场,确定长江口抵御咸潮入侵的入海径流的临界条件,以此作为水资源承载力的刚性约束,为不同水文分区展开类似工作提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志
马静
王浩
赵建世
胡雅杰
杨贵羽
关键词 水资源承载力长江口临界条件入海流量水动力学模型    
Abstract:Water resource issues are complicated in China due to the vast territory, great differences in regional meteorological and hydrological conditions, and the uneven socio-economic development. Therefore, water resource carrying capacity issues and constraints need to be identified for the various hydrological zones. Such studies will need an indicator with a clear physical meaning and its corresponding critical condition that reflects the hydrological mechanism to ensure reliable and acceptable water resource carrying capacities around the country. This paper uses the Yangtze River Estuary as an example for a mechanistic analysis of regional water issues to identify the constraints on the water resource carrying capacity. The runoff to the sea is used as a controllable hydrological indicator with the hydrodynamic model using a salinity limit to determine the critical point where the runoff to the sea can resist sea water intrusion for the Estuary. This method can also be applied to other hydrological regions.
Key wordswater resource carrying capacity    Yangtze River Estuary    critical condition    runoff to the sea    hydrodynamic model
收稿日期: 2018-03-23      出版日期: 2019-05-14
基金资助:国家重大研发计划资助项目(2016YFC0503502);国家自然科学基金资助项目(41861124006);院士科技咨询项目(215-ZD-16-02-03)
通讯作者: 马静,教授级高工,E-mail:jingma@iwhr.com     E-mail: jingma@iwhr.com
引用本文:   
徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
XU Zhi, MA Jing, WANG Hao, ZHAO Jianshi, HU Yajie, YANG Guiyu. Key indicator and critical condition for the water resource carrying capacity in the Yangtze River Estuary. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 364-372.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.056  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I5/364
  图1 长江口模型网格及边界范围
  表1 三峡工程拦洪前后的年均径流特征值
  图2 高桥站2012年逐日潮差随时间的变化
  图3 潮位和盐度验证
  表2 均方根误差和Skill值
  图4 不同流量下各测站平均盐度变化
  表3 不同流量下长江口南支平均盐度分布
  图5 不同潮差下各测站平均盐度变化
  表4 不同潮差下长江口南支平均盐度分布
  表5 不同流量、 潮差下南支超标率
  图6 (网络版彩图)不同流量、 潮差下南支盐度空间变化
[1] 施雅风, 曲耀光. 乌鲁木齐河流域水资源承载力及其合理利用[M]. 北京:科学出版社, 1992. SHI Y F, QU Y G. Water resources carrying capacity and its rational utilization in Urumqi river basin[M]. Beijing:Science Press, 1992. (in Chinese)
[2] 王浩, 陈敏建, 秦大庸. 西北地区水资源合理配置和承载能力研究[M]. 郑州:黄河水利出版社, 2003. WANG H, CHEN M J, QIN D Y. Study on rational allocation and carrying capacity of water resources in Northwest China[M]. Zhengzhou:Yellow River Conservancy Press, 2003. (in Chinese)
[3] 龙腾锐, 姜文超, 何强. 水资源承载力内涵的新认识[J]. 水利学报, 2004, 35(1):38-45. LONG T R, JIANG W C, HE Q. Water resources carrying capacity:New perspectives based on eco-economic analysis and sustainable development[J]. Journal of Hydraulic Engineering, 2004, 35(1):38-45. (in Chinese)
[4] 许新宜, 王浩, 甘泓. 华北地区宏观经济水资源规划理论与方法[M]. 郑州:黄河水利出版社, 1998. XU X Y, WANG H, GAN H. Theories and methods of macroeconomic water resources planning in North China[M]. Zhengzhou:Yellow River Conservancy Press, 1998. (in Chinese)
[5] 赵建世, 王忠静, 甘泓, 等. 双要素水资源承载能力计算模型及其应用[J]. 水力发电学报, 2009, 28(3):176-180. ZHAO J S, WANG Z J, GAN H, et al. Computable model for carrying capacity of two dimensional water resources and its application[J]. Journal of Hydroelectric Engineering, 2009, 28(3):176-180. (in Chinese)
[6] NAIMI-AIT-AOUDIA M, BEREZOWSKA-AZZAG E. Algiers carrying capacity with respect to per capita domestic water use[J]. Sustainable Cities and Society, 2014, 13:1-11.
[7] GRAYMORE M L M, SIPE N G, RICKSON R E. Sustaining human carrying capacity:A tool for regional sustainability assessment[J]. Ecological Economics, 2010, 69(3):459-468.
[8] LANE M, DAWES L, GRACE P. The essential parameters of a resource-based carrying capacity assessment model:An Australian case study[J]. Ecological Modelling, 2014, 272:220-231.
[9] 郑恺, 徐立荣, 郑玉成. 东营市河口区水环境承载力研究[J]. 人民黄河, 2012, 34(11):63-65, 69. ZHENG K, XU L R, ZHENG Y C. Research on water environmental carrying capacity of Hekou district in Dongying City[J]. Yellow River, 2012, 34(11):63-65, 69. (in Chinese)
[10] 郑富龙, 李景宗, 张红旗, 等. 黄河河口地区生态环境承载力多目标优化研究[J]. 人民黄河, 2008, 30(5):4-5, 18. ZHENG F L, LI J Z, ZHANG H Q, et al. Study on multi-purpose optimization of ecotope carrying capacity of the Yellow River Estuary region[J]. Yellow River, 2008, 30(5):4-5, 18. (in Chinese)
[11] 刘佳骏, 董锁成, 李泽红. 中国水资源承载力综合评价研究[J]. 自然资源学报, 2011, 26(2):258-269. LIU J J, DONG S C, LI Z H. Comprehensive evaluation of China's water resources carrying capacity[J]. Journal of Natural Resources, 2011, 26(2):258-269. (in Chinese)
[12] 蒋玫, 沈新强, 陈莲芳. 长江口及邻近水域春季鱼卵仔鱼分布与环境因子的关系[J]. 海洋环境科学, 2006, 25(2):37-39, 44. JIANG M, SHEN X Q, CHEN L F. Relationship between with abundance distribution of fish eggs, larvae and environmental factors in the Changjiang Estuary and vicinity waters in spring[J]. Marine Environmental Science, 2006, 25(2):37-39, 44. (in Chinese)
[13] 丁磊, 窦希萍, 高祥宇, 等. 长江口2013年和2014年枯季盐水入侵分析[J]. 水利水运工程学报, 2016(4):47-53. DING L, DOU X P, GAO X Y, et al. Analysis of saltwater intrusion into Yangtze Estuary during dry seasons of 2013 and 2014[J]. Hydro-Science and Engineering, 2016(4):47-53. (in Chinese)
[14] 卢陈, 袁丽蓉, 高时友, 等. 潮汐强度与咸潮上溯距离试验[J]. 水科学进展, 2013, 24(2):251-257. LU C, YUAN L R, GAO S Y, et al. Experimental study on the relationship between tide strength and salt intrusion length[J]. Advances in Water Science, 2013, 24(2):251-257. (in Chinese)
[15] 陈敏建, 胡雅杰, 马静, 等. 长江口咸潮入侵扩散响应函数及初步应用[J]. 水科学进展, 2017, 28(2):203-212. CHEN M J, HU Y J, MA J, et al. Diffusion response function and preliminary application of saltwater intrusion in the Yangtze River Estuary[J]. Advances in Water Science, 2017, 28(2):203-212. (in Chinese)
[16] 夏雪瑾, 徐健, 冯文静, 等. 长江入海流量趋势及大通-徐六泾流量关系探讨[J]. 中国水运, 2016(6):71-73. XIA X X, XU J, FENG W J, et al. Study on the trend of the runoff discharge of the Yangtze River and the relationship of runoff discharge between Datong and Xuliujing[J]. China Water Transport, 2016(6):71-73. (in Chinese)
[17] 龚政, 张长宽, 金勇, 等. 长江口斜压诊断模式三维流场数值模拟[J]. 水科学进展, 2004, 15(3):300-306. GONG Z, ZHANG C K, JIN Y, et al. 3-D current numerical model for the Yangtze River Estuary with baroclinic-diagnosis mode[J]. Advances in Water Science, 2004, 15(3):300-306. (in Chinese)
[18] 吴辉, 朱建荣. 长江河口北支倒灌盐水输送机制分析[J]. 海洋学报, 2007, 29(1):17-25. WU H, ZHU J R. Analysis of the transport mechanism of the saltwater spilling over from the North Branch in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2007, 29(1):17-25. (in Chinese)
[19] DHI. Mike 21& Mike 3 flow model FM hydrodynamic and transport module scientific documentation[EB/OL].[2018-02-15]. http://www.donpedro-relicensing.com/Lists/Announcements/Atta-chments/112/WAR-03_Attachment_C.pdf. 2011.
[20] 杨同军. 长江河口盐水入侵二、三维数值模拟研究[D]. 南京:河海大学, 2013. YANG T J. Research on salinity intrusion in the Yangtze River Estuary by 2D and 3D numerical simulation[D]. Nanjing:Hohai University, 2013. (in Chinese)
[21] 孙波. 三峡与南水北调工程对长江口盐水楔影响的数值研究[D]. 上海:同济大学, 2009. SUN B. The numerical study on the influence of the three gorges project and the south-to-north water diversion project on the saltwater wedge of the Yangtze River Estuary[D]. Shanghai:Tongji University, 2009. (in Chinese)
[22] WILLMOTT C J. On the validation of models[J]. Physical Geography, 1981, 2(2):184-194.
[23] 陈敏建, 周飞, 马静, 等. 水害损失函数与洪涝损失评估[J]. 水利学报, 2015, 46(8):883-891. CHEN M J, ZHOU F, MA J, et al. Water-induced disaster damage function and flood and water-logging damage assessment[J]. Journal of Hydraulic Engineering, 2015, 46(8):883-891. (in Chinese)
[24] XU Z, MA J, WANG H, et al. River discharge and saltwater intrusion level study of Yangtze River Estuary, China[J]. Water, 2018, 10(6):683. DOI:10.3390/w10060683.
[1] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[2] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[3] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn