Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (7): 587-592    DOI: 10.16511/j.cnki.qhdxxb.2019.21.009
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
碳纤维波纹管弯曲刚度的测量及有限元分析
魏鲲鹏, 戴兴建, 邵宗义
清华大学 工程物理系, 北京 100084
Measurements and finite element analyses of the bending stiffness of laminated carbon fiber bellows
WEI Kunpeng, DAI Xingjian, SHAO Zongyi
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(5370 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 飞轮存储动能正比于其转动惯量和角速度平方,使用碳纤维复合材料可有效提高转子线速度,而通过波纹管连接圆筒的多节式飞轮转子设计,不仅便于增大转动惯量,而且考虑到波纹管弯曲刚度对转子固有频率的影响,可实现在较低转速下过临界,增大工作转速范围。该文针对渐变铺层的碳纤维波纹管,通过轴向施力法测量其静态弯曲刚度,建立对应的有限元模型,计算不同载荷下线性和考虑几何非线性的弯曲刚度,并模拟不同下铺层的弯曲刚度。研究结果表明:波纹管弯曲刚度与载荷是非线性关系,载荷较大时测量值与理论值数量级一致,弯曲刚度随铺层数增多、轴向铺层比增加而增大,且受铺层次序影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏鲲鹏
戴兴建
邵宗义
关键词 飞轮储能碳纤维波纹管弯曲刚度有限元铺层    
Abstract:The kinetic energy stored in a flywheel depends on its rotational inertia and linear velocity. The use of carbon fiber composite materials can effectively improve the rotor speed and increasing the rotor length can increase its rotational inertia. Furthermore, multi-section flywheel rotors formed by connecting tubes through bellows enables the rotor to pass through critical frequencies at low speeds, which increases the working speed range. This paper studies the bending stiffnesses of variable thickness carbon fiber bellows with the static bending stiffness measured by the axial force method. A finite element model was then used to predict the linear and geometric nonlinear bending stiffness for various loads and various laminates. The research indicates that bending stiffness variation is nonlinear with the load, with the measured stiffness being of the same order of magnitude as the theoretical values for large load. The simulations also show how the thickness, angle and stacking sequence of the laminate affect the bending stiffness.
Key wordsflywheel energy storage    carbon fiber bellows    bending stiffness    finite element    laminate
收稿日期: 2018-11-05      出版日期: 2019-06-21
基金资助:国家重点研发计划(2018YFB0905500)
通讯作者: 戴兴建,副研究员,E-mail:daixj@tsinghua.edu.cn     E-mail: daixj@tsinghua.edu.cn
引用本文:   
魏鲲鹏, 戴兴建, 邵宗义. 碳纤维波纹管弯曲刚度的测量及有限元分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 587-592.
WEI Kunpeng, DAI Xingjian, SHAO Zongyi. Measurements and finite element analyses of the bending stiffness of laminated carbon fiber bellows. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 587-592.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.009  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I7/587
  图1 两节式飞轮转子示意图
  图2 两类转子弯曲示意图
  图3 波纹管结构示意图
  表1 T700单向带力学性能
  图4 测量原理图
  图5 试验装置图
  图6 铺层示意图
  图7 波纹管局部有限元模型
  图8 整体有限元模型
  图9 弯曲角度与力矩图
  图10 力矩与弯曲刚度图
  图11 轴向变形图
  图12 不同力矩下的弯曲刚度
  图13 不同厚度下弯曲刚度
  表2 不同铺层下弯曲刚度
[1] 李永生, 李建国. 波形膨胀节实用技术[M]. 北京:化学工业出版社, 2000. LI Y S, LI J G. Practical technology for bellows expansion joints[M]. Beijing:Chemical Industry Press, 2000.(in Chinese)
[2] IL'IN L A, LOBKOVA N A, LOS A O, et al. Approximate method of calculations for a helically corrugated tube[J]. Soviet Applied Mechanics, 1983, 19(9):764-767.
[3] BOLUND B, BERNHOFF H, LEIJON M. Flywheel energy and power storage systems[J]. Renewable & Sustainable Energy Reviews, 2007, 11(2):235-258.
[4] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7):133-140. DAI X J, DENG Z F, LIU G, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7):133-140.(in Chinese)
[5] MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable & Sustainable Energy Reviews, 2017, 67:477-490.
[6] 汤双清. 飞轮储能技术及应用[M]. 武汉:华中科技大学出版社, 2007. TANG S Q. Flywheel energy storage technology and its application[M]. Wuhan:Huazhong University of Science and Technology Press, 2007.(in Chinese)
[7] PEREZ-APARICIO J L, RIPOLL L. Exact, integrated and complete solutions for composite flywheels[J]. Composite Structures, 2011, 93(5):1404-1415.
[8] HA S K, KIM S J, NASIR S U, et al. Design optimization and fabrication of a hybrid composite flywheel rotor[J]. Composite Structures, 2012, 94(11):3290-3299.
[9] 戴兴建, 张小章, 姜新建, 等. 清华大学飞轮储能技术研究概况[J]. 储能科学与技术, 2012, 1(1):64-68. DAI X J, ZHANG X Z, JIANG X J, et al. Flywheel energy storage technology in Tsinghua University[J]. Energy Storage Science and Technology, 2012, 1(1):64-68.(in Chinese)
[10] 唐长亮, 戴兴建, 汪勇. 多层混杂复合材料飞轮力学设计与旋转试验[J]. 清华大学学报(自然科学版), 2015, 55(3):361-367. TANG C L, DAI X J, WANG Y. Mechanical design and spin test of a multi-layer commingled composite flywheel[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3):361-367. (in Chinese)
[11] 杨启述. 气体离心机技术基础[M].北京:原子能出版社,1991. YANG Q S. Technical foundation of gas centrifuge[M]. Beijing:Atomic Energy Press, 1991.(in Chinese)
[12] REICH J, CARDELLA A, CAPRICCIOLI A, et al. Experimental verification of the axial and lateral stiffness of large W7-X rectangular bellows[J]. Fusion Engineering & Design, 2007, 82(15-24):1924-1928.
[13] 任宁, 欧开良, 王长路, 等. Ω形波纹管的轴向刚度研究[J]. 机械强度, 2011, 33(5):719-723. REN N, OU K L, WANG C L, et al. Research on the axial stiffness of Ω-shaped bellows[J]. Journal of Mechanical Strength, 2011, 33(5):719-723.(in Chinese)
[14] 徐志翘, 刘燕, 杨嘉实, 等. 变厚度U型波纹壳大挠度问题的摄动解[J]. 清华大学学报(自然科学版), 1985(1):39-51. XU Z Q, LIU Y, YANG J S, et al. Large deflection of a U-shaped bellows with varying thickness[J]. Journal of Tsinghua University (Science and Technology), 1985(1):39-51. (in Chinese)
[15] 修筑, 王纪民, 马建敏. 厚度变化对U型波纹管轴向刚度的影响[J]. 噪声与振动控制, 2012, 32(5):189-192. XIU Z, WANG J M, MA J M. The effects of thickness variation on axial stiffness of U-shaped bellows[J]. Noise and Vibration Control, 2012, 32(5):189-192.(in Chinese)
[16] BECHT C. Predicting bellows response by numerical and theoretical methods[J]. Journal of Pressure Vessel Technology, 1986, 108(3):334-341.
[17] SHEN Z P. Approximate calculation of U-shaped bellows[J]. Tsinghua Science and Technology, 1996, 1(3):305-309.
[18] 王永岗, 戴诗亮, 吕英民. 波纹管在任意载荷作用下的几何非线性分析[J]. 清华大学学报(自然科学版), 2002, 42(2):220-223. WANG Y G, DAI S L, LÜ Y M. Geometrically nonlinear analysis for arbitrarily loaded bellows[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(2):220-223. (in Chinese)
[19] STEINBRINK S E, AGGARWAL M C, SHEPHERD K I M. Linear and nonlinear finite element analysis of an exhaust manifold with included bellows[C]//ASME 2007 Pressure Vessels and Piping Conference. New York:American Society of Mechanical Engineers, 2007:89-94.
[20] 张承宗. 复合材料板壳力学解析理论[M]. 北京:国防工业出版社, 2009. ZHANG C Z. Mechanics analysis theory of composite plate and shell[M]. Beijing:National Defense Industry Press, 2009.(in Chinese)
[21] MEYER-PIENING H R, FARSHAD M, GEIER B, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading experiments and computations[J]. Composite Structures, 2001, 53(4):427-435.
[22] PARK J S, HONG C S, KIM C G, et al. Analysis of filament wound composite structures considering the change of winding angles through the thickness direction[J]. Composite Structures, 2002, 55(1):63-71.
[23] 舒朝霞, 杨福江. 波纹管弯曲刚度测试方法研究[C]//中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第4册(同位素分离分卷). 北京:中国核学会, 2015:196-200. SHU Z X, YANG F J. Research on measuring method of bending stiffness of bellows[C]//China Nuclear Science and Technology Progress Report (Volume IV) -Proceedings of 2015 Annual Meeting of Chinese Nuclear Society, Volume 4(Isotope Separation Sub-volume). Beijing:Chinese Nuclear Society, 2015:196-200.(in Chinese)
[1] 王志强, 雷震宇. 基于瞬态接触特性的科隆蛋扣件轨道波磨形成机理[J]. 清华大学学报(自然科学版), 2023, 63(11): 1844-1855.
[2] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[3] 张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版), 2022, 62(2): 367-373.
[4] 张卫锋, 李东杰, 张可, 周明. 基于弯曲刚度的阶梯转子等效梁单元方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 2021-2028.
[5] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网大天顶角工况下结构响应分析[J]. 清华大学学报(自然科学版), 2022, 62(11): 1809-1815,1822.
[6] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[7] 李彦霖, 秦本科, 薄涵亮. 电容式棒位测量传感器的解析模型及验证[J]. 清华大学学报(自然科学版), 2022, 62(10): 1636-1644.
[8] 张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
[9] 包劲青, 杨晨旭, 许建国, 刘洪霞, 王高成, 张广明, 程威, 周德胜. 基于有限元方法的水力压裂全三维全耦合数值模型及其物理实验验证[J]. 清华大学学报(自然科学版), 2021, 61(8): 833-841.
[10] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[11] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[12] 徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
[13] 王波, 何洋扬, 聂冰冰, 许述财, 张金换. 底部爆炸条件下车内乘员损伤风险仿真评估[J]. 清华大学学报(自然科学版), 2020, 60(11): 902-909.
[14] 彭发忠, 张朋, 王立平, 邵珠峰, 杨迪, 杨快. 基于飞轮转速自适应规划的伺服线能量管理[J]. 清华大学学报(自然科学版), 2020, 60(11): 927-933.
[15] 桂良进, 张晓前, 周驰, 范子杰. 各向异性高强钢成形极限曲线有限元预测[J]. 清华大学学报(自然科学版), 2019, 59(1): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn