Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (8): 635-644    DOI: 10.16511/j.cnki.qhdxxb.2019.22.013
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
抽水蓄能电站极端甩负荷工况球阀协同调节
黄伟1,2, 杨开林2, 郭新蕾2, 马吉明3, 李甲振2
1. 南昌大学 建筑工程学院, 南昌 330031;
2. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038;
3. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Coordinated regulation of ball valves in pumped storage power stations for extreme conditions
HUANG Wei1,2, YANG Kailin2, GUO Xinlei2, MA Jiming3, LI Jiazhen2
1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China;
2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
3. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1617 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决某些抽水蓄能电站设计方案在极端甩负荷工况下单纯采用优化导叶关闭规律的策略不能将蜗壳和尾水管压力限制在允许范围内的问题,提出了一种进水球阀与导叶协同调节的过渡过程控制策略,并通过一维数值模拟评估了导叶关闭规律、水泵水轮机特性及球阀关闭规律等因素对机组转速、蜗壳及尾水管压力的影响。工程实例表明:进水球阀协同导叶参与调节的控制方式对机组转速、球阀进口压力以及尾水管进口压力的第1波变化影响较小,但可显著降低机组转速和球阀进口压力的第2峰值,提高尾水管进口压力的第2波谷值。该调节方式还可有效避免机组进入小开度下的“S”形不稳定区,达到改善水击压力和减小压力脉动的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄伟
杨开林
郭新蕾
马吉明
李甲振
关键词 抽水蓄能电站水力过渡过程“S”形特性进水球阀导叶    
Abstract:For some pumped storage power stations, the maximum pressures at the spiral case inlet and the draft tube inlet cannot be limited to their allowable ranges by simply optimizing the guide vane closing law for extreme conditions. This paper presents a control strategy using coordinated regulation of the intake ball valve and the guide vane for such cases. A one-dimensional simulation is used to analyze the influence of the guide vane closing law, pump-turbine characteristics and ball valve closing law on the pump-turbine rotational speed and the pressures at the spiral case inlet and the draft tube inlet. A case study shows that this cooperative control mode has little effect on the first stage of the speed and the pressures at the ball valve inlet and the draft tube inlet, but significantly reduces the secondary peaks in the speed and ball valve inlet pressure and improves the second minimum draft tube inlet pressure. Moreover, this control mode also effectively prevents the units from entering the "S" shaped unstable area for small guide vane openings, so the system reduces the water hammer and pressure pulsations in pumped storage power stations.
Key wordspumped storage power station    hydraulic transient    S-shaped characteristics    intake ball valve    guide vane
收稿日期: 2018-11-08      出版日期: 2019-08-05
基金资助:国家重点研发计划(2016YFC0401808);国家自然科学基金项目(51679262,51609265)
通讯作者: 郭新蕾,教授级高工,E-mail:guoxinlei@163.com     E-mail: guoxinlei@163.com
引用本文:   
黄伟, 杨开林, 郭新蕾, 马吉明, 李甲振. 抽水蓄能电站极端甩负荷工况球阀协同调节[J]. 清华大学学报(自然科学版), 2019, 59(8): 635-644.
HUANG Wei, YANG Kailin, GUO Xinlei, MA Jiming, LI Jiazhen. Coordinated regulation of ball valves in pumped storage power stations for extreme conditions. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 635-644.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.013  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I8/635
  图1 比转速相近的常规水轮机与水泵水轮机的全特性对比
  图2 电站布置示意图
  表1 管道和机组设计参数
  图3 不同导叶关闭时间下 H、q、n的变化过程
  图4 不同水泵水轮机特性下 H、q、n的变化过程
  图5 关阀水击压力与甩负荷过渡过程对比
  图6 不同关闭规律下的水力过渡过程分析
  表2 主要管道设计参数
  图7 某抽水蓄能电站输水系统布置示意图
  图8 实测进水球阀和导叶关闭规律
  表3 U3和 U4号机组同时甩100%负荷
  图9 数值模拟与实测甩负荷试验结果对比
  表4 U3和 U4号机组同时甩100%负荷
  图10 球阀联动与球阀不动作模拟结果对比
[1] STEFFEN B. Prospects for pumped-hydro storage in Germany[J]. Energy Policy, 2012, 45:420-429.
[2] GUITTET M, CAPEZZALI M, GAUDARD L, et al. Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective[J]. Energy, 2016, 111:560-579.
[3] TRIVEDI C, CERVANTES M J, GANDHI B K, et al. Transient pressure measurements on a high head model Francis turbine during emergency shutdown, total load rejection, and runaway[J]. Journal of Fluids Engineering, 2014, 136(12):121107.
[4] ABREU J, CABRERA E, GARCIA-SERRA S J, et al. Optimal closure of a valve for minimizing water hammer[M]//CABRERA E, ESPERT V, MART AI'G NEZ F. Hydraulic machinery and cavitation. Dordrecht, Netherlands:Springer, 1996:661-670.
[5] AZOURY P H, BAASIRI M, NAJM H. On the optimum utilization of water hammer[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1988, 202(4):249-256.
[6] 樊红刚, 崔赫辰, 陈乃祥. 导叶关闭规律非线性评价函数及多工况优化[J]. 排灌机械工程学报, 2013, 31(3):230-235, 252. FAN H G, CUI H C, CHEN N X. Non-linear evaluating function for wicket-gate closing rate optimization and multi-mode optimum method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(3):230-235, 252. (in Chinese)
[7] 王煜, 田斌. 对水轮机导叶最优关闭规律的探讨[J]. 三峡大学学报(自然科学版), 2007, 29(2):113-115, 132. WANG Y, TIAN B. Research for optimizing closing law of wicket gate of hydro-turbines[J]. Journal of China Three Gorges University (Natural Sciences), 2007, 29(2):113-115, 132. (in Chinese)
[8] 张健, 刘德有, 刘辉, 等. 江苏沙河抽水蓄能电站关闭规律与实测分析[J]. 水电能源科学, 2004, 22(2):39-41, 63. ZHANG J, LIU D Y, LIU H, et al. Study on closing law and field test of Jiangsu Shahe pumped storage station[J]. Water Resources and Power, 2004, 22(2):39-41, 63. (in Chinese)
[9] 刘立志, 樊红刚, 陈乃祥. 抽水蓄能电站导叶关闭规律的优化[J]. 清华大学学报(自然科学版), 2006, 46(11):1892-1895. LIU L Z, FAN H G, CHEN N X. Optimization of distributor closing law in pumped storage stations[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(11):1892-1895. (in Chinese)
[10] VAKIL A, FIROOZABADI B. Investigation of valve-closing law on the maximum head rise of a hydropower plant[J]. Scientia Iranica, 2009, 16(3):222-228.
[11] YU X D, ZHANG J, MIAO D. Innovative closure law for pump-turbines and field test verification[J]. Journal of Hydraulic Engineering, 2015, 141(3):05014010.
[12] KRIVCHENKO G I. 水电站动力装置过渡过程[M]. 常兆堂, 周文通, 吴培豪, 译. 北京:水利出版社, 1981. KRIVCHENKO G I. Transient process of power installation of hydropower station[M]. CHANG Z T, ZHOU W T, WU P H, trans. Beijing:Water Conservancy Press, 1981. (in Chinese)
[13] 陈乃祥, 张扬军, 于宗祥, 等. 水轮机导水叶折线关闭规律的优化计算[J]. 水力发电, 1996(12):47-51. CHEN N X, ZHANG Y J, YU Z X, et al. Optimal calculation of broken-line closure of guide blade in water turbine[J]. Water Power, 1996(12):47-51. (in Chinese)
[14] WOZNIAK L, FETT G H. Optimal gate closure schedule for hydroelectric turbine system[J]. Journal of Fluids Engineering, 1973, 95(1):47-52.
[15] 杨建东. 导叶关闭规律的优化及对水力过渡过程的影响[J]. 水力发电学报, 1999(2):75-83. YANG J D. Optimization of wicket closure rule and influence on hydraulic transients for water power station[J]. Journal of Hydroelectric Engineering, 1999(2):75-83. (in Chinese)
[16] LIU J T, LIU S H, SUN Y K, et al. Numerical simulation of pressure fluctuation of a pump-turbine with MGV at no-load condition[J]. IOP Conference Series:Earth and Environmental Science, 2012, 15(6):062036.
[17] SHAO W Y. Improving stability by misaligned guide vanes in pumped storage plant[C]//Proceedings of 2009 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China, 2009:1-5.
[18] 李海波. 预开导叶法(MGV)在抽水蓄能电站的应用[J]. 水电站机电技术, 2008, 31(1):15-16, 33. LI H B. Application of MGV in pumped storage power plant[J]. Mechanical & Electrical Technique of Hydropower Station, 2008, 31(1):15-16, 33. (in Chinese)
[19] 冯卫民, 肖光宇, 宋立. 特大口径水轮机进水球阀最优动水关闭规律及数值模拟[J]. 武汉大学学报(工学版), 2009, 42(3):287-291. FENG W M, XIAO G Y, SONG L. Discipline of hydrodynamic closure on super-large diameter intake ball valve of hydroturbine and numerical simulation[J]. Engineering Journal of Wuhan University, 2009, 42(3):287-291. (in Chinese)
[20] 侯才水, 程永光. 高水头可逆式机组导叶与球阀的协联关闭[J]. 武汉大学学报(工学版), 2005, 38(3):59-62. HOU C S, CHENG Y G. Optimized closing procedures of wicket gate and ball valve for high head reversible pump-turbine unit[J]. Engineering Journal of Wuhan University, 2005, 38(3):59-62. (in Chinese)
[21] 齐央央, 张健, 李高会, 等. 抽水蓄能电站球阀联动-导叶滞后关闭规律研究[J]. 水电能源科学, 2009, 27(5):176-178, 148. QI Y Y, ZHANG J, LI G H, et al. Study on closing law of ball valve with wicket gate delay for pumped storage power station[J]. Water Resources and Power, 2009, 27(5):176-178, 148. (in Chinese)
[22] 张春, 杨建东. 高水头抽水蓄能电站球阀与导叶联动的关闭规律研究[J]. 水电能源科学, 2011, 29(12):128-131. ZHANG C, YANG J D. Study on linkage closing rule between ball valve and guide vane in high head pumped storage power station[J]. Water Resources and Power, 2011, 29(12):128-131. (in Chinese)
[23] WYLIE E B, STREETER V L. Fluid transients in systems[M]. Englewood Cliffs, USA:Prentice Hall, 1993.
[24] NICOLET C, AVELLAN F, SIMOND J J. Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems[D]. Lausanne, France:Ecole Polytechnique Fédérale de Lausanne (EPFL), 2007.
[25] NICOLET C, AVELLAN F, ALLENBACH P, et al. Simulation of transient phenomena in Francis turbine power plants:Hydroelectric interaction[C]//Proceedings of Waterpower XⅢ, Advancing Technology for Sustainable Energy. Buffalo, USA, 2003.
[26] SUTER P. Representation of pump characteristics for calculation of water hammer[J]. Sulzer Technical Review, 1966, 66(4):45-48.
[27] 杨开林. 电站与泵站中的水力瞬变及调节[M]. 北京:中国水利水电出版社, 2000. YANG K L. Hydraulic transients and regulation in power station and pump station[M]. Beijing:China Water & Power Press, 2000. (in Chinese)
[28] 黄伟, 王珏, 丁景焕, 等. 并联引水发电系统等效简化水击计算[J]. 人民黄河, 2018, 40(10):109-113. HUANG W, WANG J, DING J H, et al. Equivalent simplification of water hammer calculation in parallel power generation system[J]. Yellow River, 2018, 40(10):109-113. (in Chinese)
[29] 陈乃祥. 水利水电工程的水力瞬变仿真与控制[M]. 北京:中国水利水电出版社, 2005. CHEN N X. Simulation and control on instantaneous hydrodynamic in hydraulic projects[M]. Beijing:China Water & Power Press, 2005. (in Chinese)
[30] 常近时. 水力机械装置过渡过程[M]. 北京:高等教育出版社, 2005. CHANG J S. Transients of hydraulic machine installations[M]. Beijing:Higher Education Press, 2005. (in Chinese)
[31] 张健, 索丽生. 抽水蓄能电站尾调设置与水力过渡过程研究[J]. 水电能源科学, 2008, 26(3):83-87, 132. ZHANG J, SUO L S. Study on tailrace surge chamber installation and hydraulic transients at pumped-storage plant[J]. Water Resources and Power, 2008, 26(3):83-87, 132. (in Chinese)
[32] 郭文成, 杨建东, 杨威嘉, 等. 抽水蓄能电站上游调压室设置条件的探讨[J]. 水力发电学报, 2014, 33(4):170-177. GUO W C, YANG J D, YANG W J, et al. Discussion on setting condition of upper surge chamber for pumped storage hydropower station[J]. Journal of Hydroelectric Engineering, 2014, 33(4):170-177. (in Chinese)
[33] BRUNONE B, GOLIA U M, GRECO M. Effects of two-dimensionality on pipe transients modeling[J]. Journal of Hydraulic Engineering, 1995, 121(12):906-912.
[34] BRUNONE B, KARNEY B W, MECARELLI M, et al. Velocity profiles and unsteady pipe friction in transient flow[J]. Journal of Water Resources Planning and Management, 2000, 126(4):236-244.
[35] 郭新蕾, 郭永鑫. 管道泄漏检测中瞬变流非恒定摩阻模型的研究[J]. 水力发电学报, 2008, 27(1):42-47. GUO X L, GUO Y X. Study of unsteady friction models in transient flow for leak detection[J]. Journal of Hydroelectric Engineering, 2008, 27(1):42-47. (in Chinese)
[36] 郭新蕾, 杨开林. 管道泄漏检测的水力瞬变全频域数学模型[J]. 水利学报, 2008, 39(10):1264-1271, 1278. GUO X L, YANG K L. Hydraulic transient model in frequency domain for leak detection in pipeline systems[J]. Journal of Hydraulic Engineering, 2008, 39(10):1264-1271, 1278. (in Chinese)
[37] 韩伶俐. 对抽水蓄能电站球阀参与机组甩负荷流量调节的几点看法[J]. 大电机技术, 2013(2):47-51. HAN L L. Opinions on ball valve participating in regulation guarantee when pump-storage units reject the load[J]. Large Electric Machine and Hydraulic Turbine, 2013(2):47-51. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn