Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (8): 683-688    DOI: 10.16511/j.cnki.qhdxxb.2018.25.059
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于零偏置电流的磁悬浮电主轴动不平衡力抑制
荣海, 周凯, 毛飞龙
清华大学 机械工程系, 北京 100084
Suppression of imbalance vibrations in magnetically suspended spindles based on zero-bias current control
RONG Hai, ZHOU Kai, MAO Feilong
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1673 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 磁悬浮系统在偏置电流控制策略下会产生高功耗,造成温升、热变形以及传感器的温漂等,影响转子的悬浮精度。此外,由于动不平衡力、传感器测量失真以及电机偏心磁拉力等因素影响,会引起转速的同频和倍频振动。该文在传统的零偏置电流控制基础上,提出了基于多频率陷波器的动不平衡力抑制策略。首先,利用零偏置电流控制策略来降低磁轴承功耗,针对零偏置电流策略带来的系统非线性,将电流到位移的非线性系统转化为电磁力到位移的线性系统,再采用线性控制策略设计位移控制器。其次,在零偏置电流策略的基础上,引入多频率陷波器来抑制转子的同频与倍频振动。通过实验对比了不开启同频陷波器控制、仅开启同频陷波器控制以及开启多频率陷波器控制3种情况,验证了所提出的多频率陷波器策略能够有效抑制转子的同频与倍频振动。该方法不仅有效地抑制了转子的周期性振动,还大大降低了磁轴承功耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
荣海
周凯
毛飞龙
关键词 磁悬浮电主轴零偏置电流多频率陷波器动不平衡力抑制    
Abstract:Biased current control consumes large amounts of power which increases system temperatures and causes temperature drift in sensors which then affects the levitation accuracy. The rotor suspension is also affected by unbalanced forces, sensor runout and other effects which lead to vibrations. This paper presents a zero-bias current strategy based on a multiple frequency notch filter. The zero-bias current control algorithm reduces the power consumption, handles the nonlinearities in the zero-bias current strategy, and translates the nonlinear relationship between the current and the displacement into a linear relationship between the magnetic force and the displacement so that a linear control strategy can be used. The multiple frequency notch filter then suppresses the vibrations. Three controllers are analyzed in tests with no unbalanced control, only single frequency notch filter control and multiple frequency notch filter control to verify the system effectiveness. The method not only suppresses the vibrations, but also significantly reduces the power consumption.
Key wordsmagnetically suspended spindle    zero-bias current    multiple frequencies notch filter    imbalance vibration suppression
收稿日期: 2018-08-03      出版日期: 2019-08-05
基金资助:国家自然科学基金资助项目(51275257)
通讯作者: 周凯,教授,E-mail:zhoukai@tsinghua.edu.cn     E-mail: zhoukai@tsinghua.edu.cn
引用本文:   
荣海, 周凯, 毛飞龙. 基于零偏置电流的磁悬浮电主轴动不平衡力抑制[J]. 清华大学学报(自然科学版), 2019, 59(8): 683-688.
RONG Hai, ZHOU Kai, MAO Feilong. Suppression of imbalance vibrations in magnetically suspended spindles based on zero-bias current control. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 683-688.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.059  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I8/683
  图1 径向4自由度磁轴承系统工作原理简图
  图2 电磁力作为位移控制器输出时的 控制系统框图
  图3 采用同频陷波器抑制的控制系统框图
  图4 采用多频率陷波器抑制的控制系统框图
  图5 5自由度磁悬浮电主轴系统
  表1 径向磁轴承参数
  图6 有偏置和零偏置电流策略下位移曲线
  图7 不同转速下有偏置和零偏置电流策略下功耗曲线
  图8 600r/min转速下不启动和启动同频、 启动多频率陷波器振幅曲线
  图9 1200r/min转速下不启动和启动同频、 启动多频率陷波器振幅曲线
[1] SCHWEITZER G, MASLEN E H. Magnetic bearings:Theory, design, and application to rotating machinery[M]. Berlin, Germany:Springer-Verlag, 2009.
[2] 卞斌. 基于DSP平台的磁悬浮轴承数字控制系统[D]. 济南:山东大学, 2012. BIAN B. Digital control system of active magnetic bearing based on DSP platform[D]. Ji'nan:Shandong University, 2012. (in Chinese)
[3] 吴华春, 胡业发. 磁悬浮磨削主轴热态特性[J]. 机械工程学报, 2010, 46(20):29-33. WU H C, HU Y F. Thermal characteristics of magnetic levitated grinding spindle[J]. Journal of Mechanical Engineering, 2010, 46(20):29-33. (in Chinese)
[4] 张亮. 磁悬浮电主轴温度场的仿真与实验[D]. 武汉:武汉理工大学, 2015. ZHANG L. Simulation and experiment of temperature field for active magnetic bearing[D]. Wuhan:Wuhan University of Technology, 2015. (in Chinese)
[5] CHARARA A, DE MIRAS J, CARON B. Nonlinear control of a magnetic levitation system without premagnetization[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):513-523.
[6] SIVRIOGLU S, NONAMI K, SAIGO M. Low power consumption nonlinear control with H compensator for a zero-bias flywheel AMB system[J]. Journal of Vibration and Control, 2004, 10(8):1151-1166.
[7] 张剀, 赵雷, 赵鸿宾. 磁悬浮飞轮低功耗控制方法仿真研究[J]. 清华大学学报(自然科学版), 2004, 44(3):301-303. ZHANG K, ZHAO L, ZHAO H B. Zero-power control method for a flywheel suspended by active magnetic bearings[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(3):301-303. (in Chinese)
[8] JASTRZEBSKI R P, SMIRNOV A, MYSTKOWSKI A, et al. Cascaded position-flux controller for an AMB system operating at zero bias[J]. Energies, 2014, 7(6):3561-3575.
[9] CUI P L, WANG Q, LI S, et al. Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4828-4835.
[10] SHI J, ZMOOD R, QIN L. Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals[J]. Control Engineering Practice, 2004, 12(3):283-290.
[11] HERZOG R, BVHLER P, GÄHLER C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):580-586.
[12] CUI P, LI S, WANG Q R, et al. Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11):6962-6969.
[13] DARBANDI S M, BEHZAD M, SALARIEH H, et al. Harmonic disturbance attenuation in a three-pole active magnetic bearing test rig using a modified notch filter[J]. Journal of Vibration and Control, 2015, 11(4):46-51.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn