Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (9): 720-728    DOI: 10.16511/j.cnki.qhdxxb.2019.26.012
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
航天器姿态机动的敏捷性评估
印明威, 王贤宇, 李京阳, 宝音贺西
清华大学 航天航空学院, 北京 100084
Assessing spacecraft agility
YIN Mingwei, WANG Xianyu, LI Jingyang, BAOYIN Hexi
School of Aerospace Engineering, Tsinghua University, Beijing 10084, China
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用最优控制提高传统卫星的敏捷性收益巨大,但风险并存,为了量化敏捷性的改善程度,评估不同航天器的敏捷性,该文提出了一种评估方法。首先,对航天器传统机动和时间最优机动进行了分析。其次,以姿态机动的时间为中间量,构建了近似角加速度包络和等效敏捷包络。然后,引入了敏捷因子和敏捷性曲线的概念,对姿态机动的敏捷性进行定量评估。最后,给出了仿真算例验证方法的可靠性。仿真结果与前人的研究相印证,准确地预估了航天器的平均机动时间。结果表明:该方法可以定量地评估航天器的敏捷性,广泛适合于有角速度、角加速度等各种约束的情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
印明威
王贤宇
李京阳
宝音贺西
关键词 敏捷卫星Euler旋转时间最优机动性能敏捷因子    
Abstract:When increasing the spacecraft agility by optimal control, risk and benefits coexist. A method was developed to assess spacecraft agility and estimate the agility enhancement. The model analyzes the conventional eigenaxis rotation and the time-optimal rotation. Then, the reorientation time was used to define an angular acceleration envelope and an equivalent agility envelope with an agility factor and an agility curve introduced to quantitatively assess the spacecraft agility. Numerical simulations validate the reliabilities of the estimates. The results are consistent with previous research and the average reorientation time is well predicted. Thus, this method is suitable for assessing spacecraft agility.
Key wordsagile satellite    Euler rotation    time optimal    maneuver capability    agility factor
收稿日期: 2019-02-13      出版日期: 2019-08-27
基金资助:国家自然科学基金青年资助项目(11602123);国家杰出青年科学基金资助项目(11525208);中国博士后科学基金特别资助项目(2016T90086);中国博士后科学基金面上资助项目(2015M581080)
通讯作者: 宝音贺西,教授,E-mail:baoyin@tsinghua.edu.cn     E-mail: baoyin@tsinghua.edu.cn
引用本文:   
印明威, 王贤宇, 李京阳, 宝音贺西. 航天器姿态机动的敏捷性评估[J]. 清华大学学报(自然科学版), 2019, 59(9): 720-728.
YIN Mingwei, WANG Xianyu, LI Jingyang, BAOYIN Hexi. Assessing spacecraft agility. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 720-728.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.012  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I9/720
  图1 航天器姿态机动模型
  表 1 NASA的 XTE航天器无量纲化后的主要参数
  图 2 (网络版彩图)绕Z 轴变化45°时 最优机动的瞬时角加速度
  图3 (网络版彩图) 绕Z 轴变化90°时 最优机动的瞬时角加速度
  图 4 (网络版彩图)航天器 XTE机动90° 的等效敏捷包络
  图 5 (网络版彩图)航天器 XTE机动 0°~90°的敏捷性曲线
  图 6 (网络版彩图)航天器 XTE绕不同 方向机动45°的时间包络
[1] WIE B, BAILEY D, HEIBERG C. Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):96-104.
[2] 靳瑾, 张景瑞, 刘藻珍. 航天器大角度姿态快速机动控制器参数优化设计[J]. 清华大学学报(自然科学版), 2009(2):289-292.JIN J, ZHANG J R, LIU Z Z. Optimized design of controller parameters for large angle spacecraft attitude maneuvers[J]. Journal of Tsinghua University (Science and Technology), 2009(2):289-292. (in Chinese)
[3] LEMAÎTRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5):367-381.
[4] CAO X, YUE C, LIU M, et al. Time efficient spacecraft maneuver using constrained torque distribution[J]. Acta Astronautica, 2016, 123:320-329.
[5] 印明威, 李京阳, 宝音贺西. 敏捷卫星姿态机动的奇异最优控制[J]. 光学精密工程, 2018, 26(4):906-915.YIN M W, LI J Y, BAOYIN H X. Singular optimal control for three-axis reorientation of an agile satellite[J]. Optics and Precision Engineering, 2018, 26(4):906-915. (in Chinese)
[6] YIN M, LI J, WANG X, et al. A rapid method for validation and visualization of agile earth-observation satellites scheduling[J]. Astrodynamics, 2018, 2(4):325-337.
[7] KARPENKO M, PROULX R J. Experimental implementation of Riemann-Stieltjes optimal control for agile imaging satellites[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):144-150.
[8] KING J T, KARPENKO M. A simple approach for predicting time-optimal slew capability[J]. Acta Astronautica, 2016, 120:159-170.
[9] KARPENKO M, BHATT S, BEDROSSIAN N, et al. First flight results on time-optimal spacecraft slews[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2):367-376.
[10] KARPENKO M, BHATT S, BEDROSSIAN N, et al. Flight implementation of shortest-time maneuvers for imaging satellites[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1069-1079.
[11] 曾祥远, 龚胜平, 高云峰, 等. 非理想太阳帆航天器时间最优交会任务[J]. 清华大学学报(自然科学版), 2014, 54(9):1240-1244, 1254.ZENG X Y, GONG S P, GAO Y F, et al. Non-ideal solar sailcraft time-optimal rendezvous mission[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(9):1240-1244, 1254. (in Chinese)
[12] 徐利民, 张涛. 基于外扰观测器的双通道航天器姿态控制方法[J]. 清华大学学报(自然科学版), 2017, 57(6):631-636.XU L M, ZHANG T. Dual channel spacecraft attitude control method based on an external disturbance observer[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(6):631-636. (in Chinese)
[13] 程磊, 王天舒, 李俊峰. 挠性多体卫星姿态动力学与控制[J]. 清华大学学报(自然科学版), 2005, 45(11):1506-1509.CHENG L, WANG T S, LI J F. Attitude dynamics and control of a flexible multi-body satellite[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(11):1506-1509. (in Chinese)
[14] YANG H W, LI S, BAI X L. Fast homotopy method for asteroid landing trajectory optimization using approximate initial co-states[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(3):585-597.
[15] ROSS I M, KARPENKO M. A review of pseudospectral optimal control:From theory to flight[J]. Annual Reviews in Control, 2012, 36(2):182-197.
[16] KARPENKO M, KING J T, DENNEHY C J, et al. Agility analysis of the james webb space telescope[J]. Journal of Guidance, Control, and Dynamics, 2018, 10(1):1-12.
[17] BILIMORIA K D, WIE B. Time-optimal three-axis reorientation of a rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(3):446-452.
[18] BAI X L, JUNKINS J L. New results for time-optimal three-axis reorientation of a rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1071-1076.
[19] FLEMING A, SEKHAVAT P, ROSS I M. Minimum-time reorientation of a rigid body[J]. Journal of guidance, control, and dynamics, 2010, 33(1):160-170.
[20] STEYN W H. Near-minimum-time eigenaxis rotation maneuvers using reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):1184-1189.
[21] YU Y N, MENG X Y, LI K Y, et al. Robust control of flexible spacecraft during large-angle attitude maneuver[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):1027-1033.
[22] GILL P E, MURRAY W, SAUNDERS M A. SNOPT:An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1):99-131.
[23] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2011, 32(4):476-502.
[24] PATTERSON M A, RAO A V. GPOPS-Ⅱ:A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software (TOMS), 2014, 41(1):1-10.
[25] WIE B. Singularity escape/avoidance steering logic for control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):948-956.
[26] 沈宏良, 曹万里, 刘昶. 飞机横向敏捷性的优化计算[J]. 飞行力学, 2002, 20(1):10-13.SHEN H L, CAO W L, LIU C. An optimal algorithm of calculating the roll agility for aircraft[J]. Flight Dynamics, 2002, 20(1):10-13. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn