Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (9): 744-749    DOI: 10.16511/j.cnki.qhdxxb.2019.26.017
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
黄卫绍, 张巍, 黄翊东
清华大学 电子工程系, 北京 100084
Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions
HUANG Weishao, ZHANG Wei, HUANG Yidong
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2365 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文面向便携设备与主机间实现短距离量子密钥分发(quantum key distribution,QKD)的应用场景,基于BB84协议提出一种小型化QKD发射单元器件。该器件采用硅PN结反向击穿作为光源发光机制,配合金属线栅偏振器实现4种不同线偏振态光子的发射。利用光阑和凸透镜实现发射光子的准直输出,并消除不同偏振光子在发射位置上的差别。数值计算结果表明:经过参数优化该器件可以实现大于20 dB的偏振消光比,原始密钥生成率可以达到3 kb/s。该器件结构高度可以控制在5 mm之内,便于在便携设备中应用。
E-mail Alert
关键词 量子密钥分发硅PN结发光线栅偏振器空间不可区分性    
Abstract:This paper describes a miniaturized quantum key distribution (QKD) transmitter for the BB84 protocol for short-range QKD applications between portable devices and hosts. The transmitter uses silicon PN junctions to generate photons and wire-grid polarizers for the polarization encoding. It also uses a convex lens and an aperture for collimation as well as to eliminate the photon spatial information. Simulations indicate that the transmitter can support a raw key generation rate of 3 kb/s and the polarization extinction ratio of the generated photons in each polarization state can reach 20 dB. The transmitter height can be as small as 5 mm, so the device can be integrated into portable devices such as mobile phones.
Key wordsquantum key distribution    silicon PN junction emissions    wire-grid polarizer    spatial indistinguishability
收稿日期: 2019-01-07      出版日期: 2019-08-27
通讯作者: 张巍,副教授,     E-mail:
黄卫绍, 张巍, 黄翊东. 基于硅PN结发光的量子密钥分发发射单元器件[J]. 清华大学学报(自然科学版), 2019, 59(9): 744-749.
HUANG Weishao, ZHANG Wei, HUANG Yidong. Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 744-749.
链接本文:  或
  图1 (网络版彩图)QKD发射单元的器件结构设计
  图2 (网络版彩图)铝线栅起偏器的性能仿真
  图3 空间光学结构模型与消除信号空间信息的设计
  表1 器件主要设计参数
[1] BENNETT C H, BRASSARD G. Quantum cryptography:Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York, USA:IEEE, 1984:175-179.
[2] HWANG W Y. Quantum key distribution with high loss:Toward global secure communication[J]. Physical Review Letters, 2003, 91(5):057901.
[3] YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501.
[4] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11):10387-10409.
[5] 倪振华, 李亚麟, 姜艳. 量子保密通信原理及其在电网中的应用探究[J]. 电力信息与通信技术, 2017, 15(10):43-49.NI Z H, LI Y L, JIANG Y. Brief introductionof quantum secure communications andthe application survey in state grid[J]. Electric Power Information and Communication Technology, 2017, 15(10):43-49. (in Chinese)
[6] PEEV M, PACHER C, ALLÉAUME R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11(7):075001.
[7] LIAO SK, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43-47.
[8] DULIGALL J L, GODFREY M S, HARRISON K A, et al. Low cost and compact quantum key distribution[J]. New Journal of Physics, 2006, 8(10):249-256.
[9] VEST G, RAU M, FUCHS L, et al. Design and evaluation of a handheld quantum key distribution sender module[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3):6600607.
[10] CHUN H, CHOI I, FAULKNER G, et al. Handheld free space quantum key distribution with dynamic motion compensation[J]. Optics Express, 2017, 25(6):6784-6795.
[11] NEWMAN R. Visible light from a silicon PN junction[J]. Physical Review, 1955, 100(2):700-703.
[12] CHYNOWETH A G, MCKAY K G. Photon emission from avalanche breakdown in silicon[J]. Physical Review, 1956, 102(2):369-376.
[13] MICHAELIS W, PILKUHN M H. Radiative recombination in silicon PN junctions[J]. Physica Status Solidi B, 1969, 36(1):311-319.
[14] SNYMAN L W, PLESSIS M D, AHARONI H. Three terminal n+ ppn silicon CMOS light emitting devices (450 nm-750 nm) with three order increase in quantum efficiency[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik, Croatia:IEEE, 2005:1159-1166.
[15] PLESSIS D M, SNYMAN L W, AHARONI H. Low-voltage light emitting devices in silicon IC technology[C]//Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. Dubrovnik, Croatia:IEEE, 2005:1145-1149.
[16] GOODMAN J W. Introduction to Fourier optics[M]. 3rd ed. Englewood:Roberts and Company Publishers, 2005.
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持