Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (1): 48-56    DOI: 10.16511/j.cnki.qhdxxb.2019.26.040
  专题:港珠澳大桥 本期目录 | 过刊浏览 | 高级检索 |
高韧超薄沥青磨耗层在港珠澳大桥珠海人工岛通道上的应用
虞将苗1, 陈富达1, 彭馨彦2, 刘国华3, 邓科4, 余贤书1, 张文锋5, 莫广亮5, 卢学5, 陈镇文2, 徐天尧2, 李俊华5
1. 华南理工大学 土木与交通学院, 广州 510640;
2. 广州市市政工程维修处, 广州 510030;
3. 珠海格力港珠澳大桥珠海口岸建设管理有限公司, 珠海 519000;
4. 中交公路规划设计院有限公司, 北京 100088;
5. 华运通达(广东)道路科技有限公司, 佛山 528300
High-toughness, ultra-thin friction course for the channel on the Zhuhai artificial island of the Hong Kong-Zhuhai-Macao Bridge
YU Jiangmiao1, CHEN Fuda1, PENG Xinyan2, LIU Guohua3, DENG Ke4, YU Xianshu1, ZHANG Wenfeng5, MO Guangliang5, LU Xue5, CHEN Zhenwen2, XU Tianrao2, LI Junhua5
1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China;
2. Guangzhou Municipal Engineering Maintenance Department, Guangzhou 510030, China;
3. Zhuhai Gree Hong Kong-Zhuhai-Macao Bridge Zhuhai Port Construction Management Co., Ltd., Zhuhai 519000, China;
4. CCCC Highway Consultants Co., Ltd., Beijing 100088, China;
5. China Fortune Connection(Canton) Roadway Technology Co., Ltd., Foshan 528300, China
全文: PDF(7814 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为对港珠澳大桥珠海人工岛通道(原施工便桥)桥面铺装层进行品质化提升并延长桥面系服役寿命,采用了高韧超薄沥青磨耗层对其进行整体罩面。实施过程中,结合桥梁恒载受限、作业时间紧等特点,在铺装层材料与配比设计、桥面修复材料选择与工艺、水泥桥面与铺装层界面处置技术、施工质量精细化管理与控制等方面进行了系统的试验研究和现场实施方案设计。设计的基于同步摊铺工艺的高韧超薄沥青磨耗层具有实施厚度薄、铺装性能强、压实功需求小、施工效率高等技术特点。经现场测试,罩面前后的桥面铺装在构造深度(提升0.34 mm)、摩擦系数(提升15.5 BPN)、降噪性能(降低噪音3~6 dB)与平整度(由6.5 mm提升至1.4 mm)上得到了明显改善,且其密水性能(<30 mL/min)和拉拔强度(>0.7 MPa)良好。相关的成套技术体系可进一步推广为各类公路、城市道路、桥梁和隧道结构的表面磨耗层方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
虞将苗
陈富达
彭馨彦
刘国华
邓科
余贤书
张文锋
莫广亮
卢学
陈镇文
徐天尧
李俊华
关键词 高韧超薄磨耗层同步摊铺界面粘结    
Abstract:This paper describes a high-toughness, ultra-thin friction course developed to improve the pavement quality and extend the service life of the channel (originally a temporary bridge) for the artificial island in the Hong Kong-Zhuhai-Macao Bridge. The effects of extra loads and the extended operating period on the bridge were investigated experimentally for various binding materials, gradation designs, repair plans for the bridge deck, various bonding interface treatment, and construction quality management techniques. The results show that the high-toughness, ultra-thin friction course coupled with synchronous paving provides thinner pavement thicknesses, much higher mechanical strength, less compaction requirement, and higher construction efficiency. The texture depth (increased by 0.34 mm), friction coefficient (increased by 15.5 BPN), noise (reduced by 3~6 dB), and flatness (improved from 6.5 mm to 1.4 mm) were significantly better than for the original cement concrete bridge pavement. The water sealing ability (< 30 mL/min) and the debonding strength (> 0.7 MPa) reached a good condition. This paving system can also be applied upgrade highway, urban road, bridge, and tunnel surfaces.
Key wordshigh-toughness    ultra-thin friction course    synchronous paving    interface bonding
收稿日期: 2019-04-26      出版日期: 2020-01-03
引用本文:   
虞将苗, 陈富达, 彭馨彦, 刘国华, 邓科, 余贤书, 张文锋, 莫广亮, 卢学, 陈镇文, 徐天尧, 李俊华. 高韧超薄沥青磨耗层在港珠澳大桥珠海人工岛通道上的应用[J]. 清华大学学报(自然科学版), 2020, 60(1): 48-56.
YU Jiangmiao, CHEN Fuda, PENG Xinyan, LIU Guohua, DENG Ke, YU Xianshu, ZHANG Wenfeng, MO Guangliang, LU Xue, CHEN Zhenwen, XU Tianrao, LI Junhua. High-toughness, ultra-thin friction course for the channel on the Zhuhai artificial island of the Hong Kong-Zhuhai-Macao Bridge. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 48-56.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.040  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I1/48
  表1 不同类型改性沥青试验检测结果
  表2 不同类型乳化沥青试验检测结果
  表3 混合料合成矿料级配
  表4 高韧沥青混合料技术指标要求及测试结果
  表5 四点弯疲劳寿命测试结果
  表6 铣刨前后桥面构造深度、 摩擦系数、 拉拔强度、 抗剪强度汇总表
  表7 不同类型沥青混合料压实曲线的数值拟合汇总表
  表8 应用效果后评估汇总表
  图1 高韧超薄沥青磨耗层示意图
  图2 原桥面存在开裂、 破损病害
  图3 HRR 技术施工工序
  图4 HRR 砂浆实施后的桥面病害修复效果图
  图5 拉拔试验
  图6 层间剪切试验
  图7 同步摊铺工艺
  图8 新型轮碾成型装置及其碾压过程
  图9 不同厚度条件下沥青混合料的轮碾压实曲线图
[1] 黄晓明. 水泥混凝土桥面沥青铺装层技术研究现状综述[J]. 交通运输工程学报, 2014, 14(1):1-10. HUANG X M. Research status summary of asphalt pavement technology on cement concrete bridge deck[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1):1-10. (in Chinese)
[2] WANG Y H. The effects of using reclaimed asphalt pavements (RAP) on the long-term performance of asphalt concrete overlays[J] Construction and Building Materials, 2015, 120:335-348.
[3] 臧继成. 重载交通水泥混凝土特大桥桥面铺装受力分析及关键技术研究[D]. 天津:河北工业大学, 2014. ZANG J C. Research on force analysis and key technologies of heavy load traffic pavement of cement concrete bridge deck[D]. Tianjin:Hebei University of Technology, 2014. (in Chinese)
[4] OZER H, AL-QADI I, WANG H, et al. Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements:Modelling and in-situ response to accelerated loading[J]. International Journal of Pavement Engineering, 2012, 13(2):181-196.
[5] GE Z S, WANG H, ZHANG Q, et al. Glass fiber reinforced asphalt membrane for interlayer bonding between asphalt overlay and concrete pavement[J]. Construction and Building Materials, 2015, 101:918-925.
[6] CHEN D H, WON M. CAM and SMA mixtures to delay reflective cracking on PCC pavements[J]. Construction and Building Materials, 2015, 96:226-237.
[7] 代笠. 温度和粗糙度对混凝土桥面铺装层间力学性能的影响[D]. 重庆:重庆交通大学, 2017. DAI L. Effect of temperature and roughness on the mechanical properties of concrete bridge deck pavement[D]. Chongqing:Chongqing Jiaotong University, 2017. (in Chinese)
[8] KTARI R, FOUCHAL F, MILLIEN A, et al. Surface roughness:A key parameter in pavement interface design[J]. European Journal of Environmental & Civil Engineering, 2017, 21(S1):27-42.
[9] YU J M, ZHANG X N, XIONG C L. A methodology for evaluating micro-surfacing treatment on asphalt pavement based on grey system models and grey rational degree theory[J]. Construction and Building Materials, 2017, 150:214-226.
[10] ZHONG Y, LIU H. Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement[J]. Road Materials and Pavement Design, 2014, 15(3):701-711.
[11] LÜ J B, XU Z C, YIN Y M, et al. Comparison of asphalt mixtures designed using the Marshall and improved GTM methods[J]. Advance in Materials Science and Engineering, 2018:7328791.
[12] HAN D D, WEI L Y, ZHANG J X. Experimental study on performance of asphalt mixture designed by different method[J]. Procedia Engineering, 2016, 137:407-414.
[13] 肖鑫, 张肖宁. 基于CAVF法的排水沥青混合料组成设计[J]. 公路交通科技, 2016,33(10):7-12. XIAO X, ZHANG X N. Design of porous asphalt mixture based on CAVF method[J]. Journal of Highway and Transportation Research and Development, 2016,33(10):7-12. (in Chinese)
[14] 孔保林, 蔡燕霞. 水泥混凝土桥面构造对桥面防水层粘结性能的影响[J]. 公路工程, 2012, 37(4):207-209. KONG B L, CAI Y X. Influence on the waterproofing layer bonding performance of construction of concrete bridge deck[J]. Highway Engineering, 2012, 37(4):207-209. (in Chinese)
[15] 王火明, 凌天清, 肖友高, 等. 刚柔复合式路面界面层强度特性试验研究[J]. 重庆交通大学学报(自然科学版), 2009, 28(6):1033-1036. WANG H M, LING T Q, XIAO Y G, et al. Experimental study on interface layer strength characteristics of rigid-flexible composite pavement[J]. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(6):1033-1036. (in Chinese)
[16] GARDETE D, PICADO-SANTOS L, CAPITÃO S. Improving bituminous mixture performance by optimizing the design compaction energy-A cost effective approach for better pavements[J]. Construction and Building Materials, 2018, 190:1173-1181.
[17] YEUNG E, BRAHAM A, BARNAT J. Exploring the effect of asphalt-concrete fabrication and compaction location on six compaction metrics[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016163.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn