Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (10): 880-886    DOI: 10.16511/j.cnki.qhdxxb.2020.25.014
  工程物理 本期目录 | 过刊浏览 | 高级检索 |
基于源活度反演计算的γ辐射场数据重构方法
李华1, 赵原1, 曹勤剑1, 何良1,2, 李君利2, 刘立业1
1. 中国辐射防护研究院 保健物理所, 剂量学实验室, 太原 030006;
2. 清华大学 工程物理系, 粒子技术与辐射成像教育部重点实验室, 北京 100084
γ-radiation field reconstruction method basedon source activity inversion calculations
LI Hua1, ZHAO Yuan1, CAO Qinjian1, HE Liang1,2, LI Junli2, LIU Liye1
1. Radiation Dosimetry Laboratory, Department of Health Physics, China Institute for Radiation Protection, Taiyuan 030006, China;
2. Key Laboratory of Particle&Radiation Imaging ofMinistry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(2582 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 三维辐射场是反映核设施内真实外照射分布的重要数据库,可为核设施现场建立有效的屏蔽措施及确定合理的作业方案提供数据基础。为了重构出与实际较为相符的三维γ辐射场,结合点核积分理论,该文利用最小二乘法和Gauss-Seidel迭代算法,建立了基于源活度反演计算的γ辐射场重构方法,研究了所选取测量点位置对源活度反演结果的影响,并结合某核电现场的实地测量数据对该重建方法进行了实验验证与计算分析。结果表明:在现场实验中基于源活度反演算法重构出的γ辐射场数据与相对应的测量数据之间的偏差约为10%,能够满足核设施现场辐射防护的计算需要,可为其现场的辐射防护最优化提供技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李华
赵原
曹勤剑
何良
李君利
刘立业
关键词 辐射剂量学点核积分源活度反演γ辐射场    
Abstract:Three-dimensional radiation fields must be known to predict the distribution of real external exposures in nuclear facilities. Such data fields provide the basis for establishing effective shielding measures and determining reasonable operating plans at nuclear facilities. Three-dimensional gamma radiation fields were reconstructed using point-kernel integral theory and a source activity inversion algorithm using the least squares method and a Gauss-Seidel iterative algorithm. The results were then used to study the influences of the dose measurement positions on the source inversion results. The reconstruction method was verified using measured data from a nuclear power plant. The results show about 10% difference between the reconstructed gamma radiation field data and the measured data which is sufficient for radiation protection studies of nuclear facilities and for optimizing radiation protection procedures.
Key wordsradiation dosimetry    point-kernel integration    source activity inversion    γ-radiation field
收稿日期: 2019-06-19      出版日期: 2020-07-09
基金资助:刘立业,研究员,E-mail:liuliye@cirp.org.cn
引用本文:   
李华, 赵原, 曹勤剑, 何良, 李君利, 刘立业. 基于源活度反演计算的γ辐射场数据重构方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 880-886.
LI Hua, ZHAO Yuan, CAO Qinjian, HE Liang, LI Junli, LIU Liye. γ-radiation field reconstruction method basedon source activity inversion calculations. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 880-886.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.014  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I10/880
  
  
  
  
  
  
  
  
  
[1] OHGA Y, FUKUDA M, SHIBATA K, et al. A system for the calculation and visualization of radiation field for maintenance support in nuclear power plants[J]. Radiation Protection Dosimetry, 2005, 116(1-4):592-596.
[2] MÓL A C A, PEREIRA C M N A, FREITAS V G G, et al. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques[J]. Annals of Nuclear Energy, 2011, 38(2-3):705-712.
[3] RÓDENAS J, ZARZA I, BURGOS M C, et al. Developing a virtual reality application for training nuclear power plant operators:Setting up a database containing dose rates in the refuelling plant[J]. Radiation Protection Dosimetry, 2004, 111(2):173-180.
[4] JEONG K S, CHOI B S, MOON J K, et al. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities[J]. Annals of Nuclear Energy, 2014, 73:441-445.
[5] DA SILVA M H, DO ESPÍRITO SANTO A C, MARINS E R, el al. Using virtual reality to support the physical security of nuclear facilities[J]. Progress in Nuclear Energy, 2015, 78:19-24.
[6] SAUNDERS P. Exposure reduction through optimized planning and scheduling:Guidance on incorporating ALARA concepts[R]. Palo Alto, USA:Electric Power Research Institute (EPRI), 2005.
[7] VERMEERSCH F. ALARA pre-job studies using the VISIPLAN 3D ALARA planning tool[J]. Radiation Protection Dosimetry, 2005, 115(1-4):294-297.
[8] VERMEERSCH F. VISIPLAN 4.03D ALARA planning tool user's manual[Z]. Antwerp, Belgium:SCK·CEN, 2006.
[9] SAUNDERS P, RAHON T, QUINN D, et al. Demonstration of advanced 3D ALARA planning prototypes for dose reduction[R]. Palo Alto, USA:EPRI, 2012.
[10] 李春槐. 点核积分程序研制和发展[J]. 核动力工程, 2001, 22(1):19-21, 41. LI C H. Development and improvement in point-kernel integral computer code[J]. Nuclear Power Engineering, 2001, 22(1):19-21, 41. (in Chinese)
[11] 李华, 赵原, 刘立业, 等. 基于MCNP对γ射线吸收剂量累积因子的计算与研究[J]. 辐射防护, 2017, 37(3):161-168. LI H, ZHAO Y, LIU L Y, et al. Research on gamma ray buildup factor for energy absorption based on MCNP[J]. Radiation Protection, 2017, 37(3):161-168. (in Chinese)
[12] 李华, 赵原, 刘立业, 等. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5):525-529. LI H, ZHAO Y, LIU L Y, et al. Effect of medium size on the γ-ray buildup factor for energy absorption in water[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(5):525-529. (in Chinese)
[13] 刘立业, 曹勤剑, 熊万春, 等. 基于高纯锗探测器的核电厂一回路系统辐射源项就地γ谱测量[J]. 辐射防护, 2015, 35(5):257-261. LIU L Y, CAO Q Q, XIONG W C, et al. In-situ gamma-spectrometry measurement of radiological source term for primary system of NPPs based on HPGe detector[J]. Radiation Protection, 2015, 35(5):257-261. (in Chinese)
[14] 刘立业, 马吉增, 张斌全, 等. Monte Carlo方法用于就地γ辐射源项调查与剂量评估[J]. 清华大学学报(自然科学版), 2007, 47(S1):991-995. LIU L Y, MA J Z, ZHANG B Q, et al. Monte Carlo method for in situ gamma radiological characterization and dose estimation[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(S1):991-995. (in Chinese)
[1] 何良, 李华, 赵原, 刘立业, 曹勤剑, 李君利. 基于辐射场梯度变化的变权重网格划分方法[J]. 清华大学学报(自然科学版), 2019, 59(10): 861-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn