Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 109-116    DOI: 10.16511/j.cnki.qhdxxb.2019.21.033
  专题:电动汽车 本期目录 | 过刊浏览 | 高级检索 |
考虑齿轮耦合振动的换挡过程非线性动力学分析
隋立起1, 田丰1, 李波1, 曾远帆1, 田光宇1, 陈红旭2
1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
2. 宜宾丰川动力科技有限公司, 宜宾 644600
Nonlinear dynamics analyses of gear shifting with gear vibrations
SUI Liqi1, TIAN Feng1, LI Bo1, ZENG Yuanfan1, TIAN Guangyu1, CHEN Hongxu2
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. Yibin Fengchuan Power Technology Co., Ltd., Yibin 644600, China
全文: PDF(2908 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为分析电驱动机械变速器换挡过程接合套和接合齿圈的动态特性,该文建立了考虑齿轮耦合振动的换挡过程非线性动力学模型。该模型中,接合套和接合齿圈在接合过程中的接触冲击由非线性接触力学模型描述,含间隙的传动齿轮非线性振动由齿轮动力学集中质量法建模描述。这2种非线性运动过程最后由统一的动力学方程耦合。考虑到接合套和接合齿圈不同的接合状态,总结了5种状态,并分别列出其耦合动力学方程,进而通过Runge-Kutta法对系统动态特性进行了仿真计算。所得的仿真结果与实验结果相吻合,证明了该模型的正确性。在此基础上,分析接合套和接合齿圈的接触冲击力,结果表明:即使仅存在微小的转速差和转角差,瞬时冲击力也高达23 800 N。该仿真结果对于接合套和接合齿圈的优化设计及提升换挡品质具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
隋立起
田丰
李波
曾远帆
田光宇
陈红旭
关键词 电动汽车电驱动机械变速器接触冲击齿轮动力学非线性动力学    
Abstract:The dynamic characteristics of a sleeve and a gear ring during shifting of an electric drive mechanical transmission were studied using a nonlinear dynamic model that included the coupled vibrations of the drive gears. The model used a nonlinear contact model to describe the impact of the sleeve and the gear ring during engaging with nonlinear vibrations of the drive gears with clearances described using the concentrating mass method of gear dynamics. The two nonlinear processes were coupled by the dynamics equations. The various engaging conditions of the sleeve and the gear ring were summarized into five states with their coupled dynamics equations. Then, the dynamic characteristics of the system were simulated using the Runge-Kutta method. The results are consistent with experimental data. Analyses of the impact force between the sleeve and the gear ring shows that with even only a slight difference between the relative rotational speed and the contact angle, the impact force can reach 23 800 N. The results are of great significance for optimizing sleeves and gear rings for improving gear shifting quality.
Key wordselectric vehicle    electrically drive mechanical transmission    shift impact    gear dynamics    nonlinear dynamics
收稿日期: 2019-06-05      出版日期: 2020-01-15
基金资助:田光宇,教授,E-mail:tian_gy@tsinghua.edu.cn
引用本文:   
隋立起, 田丰, 李波, 曾远帆, 田光宇, 陈红旭. 考虑齿轮耦合振动的换挡过程非线性动力学分析[J]. 清华大学学报(自然科学版), 2020, 60(2): 109-116.
SUI Liqi, TIAN Feng, LI Bo, ZENG Yuanfan, TIAN Guangyu, CHEN Hongxu. Nonlinear dynamics analyses of gear shifting with gear vibrations. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 109-116.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.033  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/109
  表1 动力学模型参数
  表2 参数列表
  图1 电驱动机械变速器系统
  图2 换挡过程动力学模型
  图3 5种接合状态
  图4 不同状态切换条件
  图5 自由行程状态受力
  图6 上导角接触状态受力
  图7 上齿面接触状态受力
  图8 实验台架
  图9 打齿工况接合套轴向运动曲线
  图1 0 非打齿工况接合套轴向运动曲线
  图1 1 无间隙和有间隙打齿工况接合套速度仿真
  图1 2 换挡接触冲击力仿真
[1] LEE H D, SUL S K, CHO H S, et al. Advanced gear-shifting and clutching strategy for a parallel-hybrid vehicle[J]. IEEE Industry Applications Magazine, 2000, 6(6):26-32.
[2] ZHONG Z M, CHEN X L, YU Z P, et al. Concept evaluation of a novel gear selector for automated manual transmissions[J]. Mechanical Systems and Signal Processing, 2012, 31:316-331.
[3] HOFMAN T, DAI C H. Energy efficiency analysis and comparison of transmission technologies for an electric vehicle[C]//2010 IEEE Vehicle Power and Propulsion Conference. Lille, France:IEEE, 2010.
[4] ZITO G. AMT Control for parallel hybrid electric vehicles[C]//Proceedings of the FISITA 2012 World Automotive Congress. Berlin, Germany:IEEE, 2013, 193:457-468.
[5] FALCONE J F, BURNS J, NELSON D. Closed loop transaxle synchronization control design[C]//SAE 2010 World Congress & Exhibition. Detroit, USA:SAE, 2010.
[6] XIN X Y, ZHONG Z M. The influence of parallel hybrid vehicle on synchronizer performance[C]//2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). Jilin, China:IEEE, 2011:721-724.
[7] BÓKA G, MÁRIALIGETI J, TRENCSÉNI B, et al. Engagement capability of face-dog clutches on heavy duty automated mechanical transmissions with transmission brake[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2010, 224(9):1125-1139.
[8] BÓKA G, MÁRIALIGETI J, LOVAS L, et al. Face dog clutch engagement at low mismatch speed[J]. Periodica Polytechnica Transportation Engineering, 2010, 38(1):29-35.
[9] CHEN H X, TIAN G Y. Modeling and analysis of engaging process of automated mechanical transmissions[J]. Multibody System Dynamics, 2016, 37(4):345-369.
[10] 陈红旭, 田光宇. 电机-变速器直连系统换挡过程建模及仿真[J]. 清华大学学报(自然科学版), 2016, 56(2):144-151. CHEN H X, TIAN G Y. Modeling and simulation of gear shifting in clutchless coupled motor-transmission system[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(2):144-151. (in Chinese)
[11] 陈红旭, 卢紫旺, 王立军, 等. 机械变速器换挡的接合过程建模及特性分析[J]. 长安大学学报(自然科学版), 2018, 38(1):112-119. CHEN H X, LU Z W, WANG L J, et al. Modeling and characteristic analysis of engaging process during gear shifting of mechanical transmissions[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(1):112-119. (in Chinese)
[12] KENT D, KENT C. Gear shift quality improvement in manual transmissions using dynamic modelling[C]//Seoul 2000 FISITA World Automotive Congress. Seoul, South Korea:SAE, 2000.
[13] DUAN C W. Analytical study of a dog clutch in automatic transmission application[J]. SAE International Journal of Passenger Cars:Mechanical Systems, 2014, 7(3):1155-1162.
[14] 陈红旭. 电机-变速器直连系统换挡过程的建模与控制[D]. 北京:清华大学, 2015. CHEN H X. Modeling and control of gearshift process of motor-transmission coupled system[D]. Beijing, China:Tsinghua University, 2015.(in Chinese)
[15] LU Z W, CHEN H X, WANG L J, et al. The engaging process model of sleeve and teeth ring with a precise, continuous and nonlinear damping impact model in mechanical transmissions[C]//International Powertrains, Fuels & Lubricants Meeting. Beijing, China:SAE, 2017.
[16] ÖZGVVEN N H, HOUSER D R. Mathematical models used in gear dynamics:A review[J]. Journal of Sound and Vibration, 1988, 121(3):383-411.
[17] 王建军, 李其汉, 李润方. 齿轮系统非线性振动研究进展[J]. 力学进展, 2005, 35(1):37-51. WANG J J, Li Q H, LI R F. Research advances for nonlinear vibration of gear transmission systems[J]. Advances in Mechanics, 2005, 35(1):37-51. (in Chinese)
[18] NGUYEN T S, SONG J, YU L Y, et al. Design and development of a real-time simulation and testing platform for a novel seamless two-speed transmission for electric vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(2):021007.
[19] 李占江. 纯电动汽车传动系统冲击抑制控制[D]. 长春:吉林大学, 2016. LI Z J. Anti-jerk control of driving system in electric vehicle[D]. Changchun:Jilin University, 2016. (in Chinese)
[20] KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64(1):217-226.
[21] ROTHBART H A, WAHL A M. Mechanical design and systems handbook[J]. Journal of Applied Mechanics, 1965, 32(2):478.
[22] BRACH R M. Rigid body collisions[J]. Journal of Applied Mechanics, 1989, 56(1):133-138.
[23] HU S W, GUO X L. A dissipative contact force model for impact analysis in multibody dynamics[J]. Multibody System Dynamics, 2015, 35(2):131-151.
[24] LIU G, PARKER R G. Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration[J]. Journal of Mechanical Design, 2008, 130(12):121402.
[1] 毕军, 杜宇佳, 王永兴, 左小龙. 基于用户综合满意度的电动汽车充电诱导优化模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1750-1759.
[2] 杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
[3] 仇斌, 梁宏毅, 董国华, 应梓浩, 刘亚辉. 国内外燃料电池汽车商业化示范运营评价方法对比[J]. 清华大学学报(自然科学版), 2022, 62(3): 427-437.
[4] 王靖瑶, 郑华青, 郭景华, 罗禹贡. 通信延迟下智能电动汽车队列分布式自适应鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 889-897.
[5] 田丰, 王立军, 隋立起, 曾远帆, 周星月, 田光宇. 电动汽车无同步器变速器换挡过程主动对齿控制[J]. 清华大学学报(自然科学版), 2020, 60(2): 101-108.
[6] 曾远帆, 陈红旭, 王立军, 田光宇, 周伟波. 无同步器的电机-变速器直连系统换挡过程建模与控制[J]. 清华大学学报(自然科学版), 2020, 60(11): 910-919.
[7] 台玉琢, 宋健, 卢正弘, 方圣楠, Nguyen Truong Sinh. 基于最优轨迹的两挡无动力中断变速器控制方法[J]. 清华大学学报(自然科学版), 2018, 58(4): 417-423.
[8] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[9] 谢海明, 林成涛, 刘涛, 田光宇, 黄勇. 增程式城市客车能量的分段跟踪优化方法[J]. 清华大学学报(自然科学版), 2017, 57(5): 476-482.
[10] NGUYEN Truong Sinh, 宋健, 方圣楠, 宋海军, 台玉琢, 李飞. 电动汽车动力保持型机械式自动两挡变速器仿真与试验[J]. 清华大学学报(自然科学版), 2017, 57(10): 1106-1113.
[11] 方圣楠, 宋健, 宋海军, 台玉琢, TRUONG Sinh Nguyen. 基于最优控制理论的电动汽车机械式自动变速器换档控制[J]. 清华大学学报(自然科学版), 2016, 56(6): 580-586.
[12] 陈红旭, 田光宇. 电机-变速器直连系统换挡过程建模及仿真[J]. 清华大学学报(自然科学版), 2016, 56(2): 144-151.
[13] 张雷, 于良耀, 宋健, 张永生, 魏文若. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版), 2016, 56(2): 152-159.
[14] 潘宁, 于良耀, 宋健. 考虑舒适性的电动汽车制动意图分类与识别方法[J]. 清华大学学报(自然科学版), 2016, 56(10): 1097-1103.
[15] 罗剑,罗禹贡,褚文博,张书玮,李克强. 分布式电动车制/驱动力协调行驶稳定性控制[J]. 清华大学学报(自然科学版), 2014, 54(6): 729-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn