Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (2): 181-188    DOI: 10.16511/j.cnki.qhdxxb.2019.21.022
  生物医学 本期目录 | 过刊浏览 | 高级检索 |
抑制多方向语音噪声的人工耳蜗语音增强算法
宫琴1,2, 饶诚1, 郑硕1
1. 清华大学 生物医学工程系, 北京 100084;
2. 清华大学无锡应用技术研究院 生物医学工程研究中心, 无锡 214000
Speech enhancement algorithm for cochlear implants to suppress multi-directional speech noise
GONG Qin1,2, RAO Cheng1, ZHENG Shuo1
1. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;
2. Research Center of Biomedical Engineering, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214000, China
全文: PDF(1511 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在复杂声音场景,尤其是多人对话交谈的情况中,人工耳蜗佩戴者的言语可懂度会显著下降。该文提出了一种基于近距离双麦克风的语音增强算法,通过提取采集信号的延迟参数,并根据该参数设置掩蔽矩阵,进而区分不同方位的声源,抑制竞争性语音噪声。同时还以数字信号处理器(digital signal processor,DSP)为核心,搭建调试平台,对算法进行了工程实现。实际测试表明,算法提升了前端信号的信噪比,鲁棒性强,并且算法单帧运行时间短,可以和常用的人工耳蜗言语编码策略相融合,满足人工耳蜗的实时计算需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫琴
饶诚
郑硕
关键词 人工耳蜗竞争性语音噪声数字信号处理    
Abstract:Cochlear implant users often cannot clearly hear sounds in complex sound environments, especially with competing talkers. This paper describes a speech enhancement algorithm based on closely-spaced microphones. The algorithm extracts a delay parameter and defines a mask matrix based on this parameter to distinguish sound sources having different orientations. The model uses a digital signal processor (DSP) to implement the algorithm. Tests indicate that the robust algorithm improves the signal-to-noise ratio. The algorithm has short single-frame run times and can be integrated with commonly used speech coding strategies, which are needed for real-time computing in cochlear implants.
Key wordscochlear implant    competitive speech noise    digital signal processing
收稿日期: 2019-03-10      出版日期: 2020-01-15
引用本文:   
宫琴, 饶诚, 郑硕. 抑制多方向语音噪声的人工耳蜗语音增强算法[J]. 清华大学学报(自然科学版), 2020, 60(2): 181-188.
GONG Qin, RAO Cheng, ZHENG Shuo. Speech enhancement algorithm for cochlear implants to suppress multi-directional speech noise. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 181-188.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.022  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I2/181
  表1 b/aτ(k,l)变化的情况
  表2 连续5帧数据的DSP和MATLAB结果对比
  表3 代码执行周期数统计
  表4 举例分析时的声源参数
  图1 双麦克风与声源位置示意图
  图2 算法流程图
  图3 系统的硬件结构图
  图4 基于DSP的算法处理流程图
  图5 (网络版彩图)第50帧数据的DSP和MATLAB结果对比
  图6 算法的鲁棒性分析
  图7 语音信号的刺激编码灰度图和功率谱图
[1] ZENG F G, REBSCHER S, HARRISON W, et al. Cochlear implants:System design, integration, and evaluation[J]. IEEE Reviews in Biomedical Engineering, 2008, 1:115-142.
[2] BUECHNER A, DYBALLA K H, HEHRMANN P, et al. Advanced beamformers for cochlear implant users:Acute measurement of speech perception in challenging listening conditions[J]. PLoS One, 2014, 9(4):e95542.
[3] HU Y, LOIZOU P C. Environment-specific noise suppression for improved speech intelligibility by cochlear implant users[J]. The Journal of the Acoustical Society of America, 2010, 127(6):3689-3695.
[4] MENG Q L, ZHENG N H, Li X. Mandarin speech-in-noise and tone recognition using vocoder simulations of the temporal limits encoder for cochlear implants[J]. The Journal of the Acoustical Society of America, 2016, 139(1):301-310.
[5] GOEHRING T, BOLNER F, MONAGHAN J J M, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users[J]. Hearing Research, 2017, 344:183-194.
[6] CHEN Y S, GONG Q. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant[J]. Biomedical Engineering Online, 2012, 11:74.
[7] KONING R, MADHU N, WOUTERS J. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(1):331-341.
[8] KOKKINAKIS K, RUNGE C, TAHMINA Q, et al. Evaluation of a spectral subtraction strategy to suppress reverberant energy in cochlear implant devices[J]. The Journal of the Acoustical Society of America, 2015, 138(1):115-124.
[9] SPRIET A, VAN DEUN L, EFTAXIADIS K, et al. Speech understanding in background noise with the two-microphone adaptive beamformer BEAMTM in the Nucleus FreedomTM cochlear implant system[J]. Ear and Hearing, 2007, 28(1):62-72.
[10] 宫琴, 郑硕. 基于波束形成与最大似然估计的近距离双麦克风语音增强算法[J]. 清华大学学报(自然科学版), 2018, 58(6):603-608. GONG Q, ZHENG S. Beamforming and maximum likelihood estimationfor speech enhancement usingdual closely-spaced microphones[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(6):603-608. (in Chinese)
[11] YOUSEFIAN N, LOIZOU P C. A dual-microphone speech enhancement algorithm based on the coherence function[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(2):599-609.
[12] AISSA-EL-BEY A, LINH-TRUNG N, ABED-MERAIM K, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Transactions on Signal Processing, 2007, 55(3):897-907.
[13] FU Q J, ZHU M, WANG X S. Development and validation of the Mandarin speech perception test[J]. The Journal of the Acoustical Society of America, 2011, 129(6):EL267-EL273.
[14] 陈又圣, 宫琴. 基于双TP型麦克风的电子耳蜗前端指向性语音增强系统的研制[J]. 仪器仪表学报, 2010, 31(9):1952-1958. CHEN Y S, GONG Q. Study on dual TP microphone-based directional speech enhancement system for cochlear implant[J]. Chinese Journal of Scientific Instrument, 2010, 31(9):1952-1958. (in Chinese)
[15] LOIZOU P C. Speech enhancement:Theory and practice[M]. Boca Raton, USA:CRC press, 2007.
[16] GOLDSWORTHY R L. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources[J]. Trends in Hearing, 2014, 18:2331216514555489.
[1] 宫琴, 郑硕. 基于波束形成与最大似然估计的近距离双麦克风语音增强算法[J]. 清华大学学报(自然科学版), 2018, 58(6): 603-608.
[2] 关添, 杨木群, 魏子昆, 姜宇程, 王健. 光刺激耳蜗听神经的机理仿真[J]. 清华大学学报(自然科学版), 2017, 57(10): 1102-1105.
[3] 关添, 吴默村, 朱凯, 王健. 980 nm脉冲激光诱发听神经冲动[J]. 清华大学学报(自然科学版), 2015, 55(6): 700-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn