Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 189-197    DOI: 10.16511/j.cnki.qhdxxb.2020.26.001
  专题:航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
太阳系尘埃动力学研究综述
刘晓东1,2
1. 中山大学 航空航天学院, 广州 510006, 中国;
2. 奥卢大学 天文系, 奥卢 90014, 芬兰
Review of research on Solar System dust dynamics
LIU Xiaodong1,2
1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, China;
2. Astronomy Research Unit, University of Oulu, Oulu 90014, Finland
全文: PDF(1771 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 太阳系尘埃动力学是一个比较新的研究方向,对理解太阳系起源、演化以及指导航天探测任务都有重要意义。该文对近几十年来太阳系尘埃动力学方面的研究进行了综述。关于尘埃的质量产率和撞击-喷射这一尘埃起源方式,介绍了前人基于地面实验结果而建立的模型,以及基于就位探测和实验得到的初始质量分布。同时,回顾了关于尘埃所受主要摄动力的建模方面的工作,以及经常用到的一些辅助分析方法。此外,尘埃的充电和溅射都会影响其动力学行为,也介绍了相关的建模和实验研究。最后,总结了尘埃族群具有代表性的形成/迁移机制,以及这些机制对尘埃族群分布构型的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓东
关键词 太阳系尘埃尘埃环尘埃动力学尘埃探测    
Abstract:Solar System dust dynamics is a relatively new research topic which is important for understanding the origin and evolution of the Solar System as well as for space missions. This paper presents a review of recent studies on Solar System dust dynamics. The dust mass production model based on experiments by previous research for the impact-ejected process is introduced, and the initial mass distribution inferred from the in-situ detections and experiments is shown.This paper also reviews research on the modelling of perturbation forces and commonly used analytical methods. Modelling and experimental studies are presented for both dust charging and sputtering effects which affect the particle dynamics. Finally, the typical formation/migration mechanisms of particle populations as well as their significance on the dust distributions are summarized.
Key wordsSolar System dust    dust rings    dust dynamics    dust detection
收稿日期: 2019-07-09      出版日期: 2020-03-03
基金资助:欧洲空间局项目(4000107249/12/NL/AF)
引用本文:   
刘晓东. 太阳系尘埃动力学研究综述[J]. 清华大学学报(自然科学版), 2020, 60(3): 189-197.
LIU Xiaodong. Review of research on Solar System dust dynamics. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 189-197.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.001  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/189
  图1 目标天体(母体)受行星际微流星体撞击后喷射尘埃示意图(经许可从文[11] 中引用该图, © Tsinghua University Press 2018)
  图2 (网络版彩图)土星磁层中的平衡电势分布(原图注单位:V)(经John Wiley and Sons许可从文[44]中引用该图,© American Geophysical Union 2002)
  图3 在木卫五Amalthea轨道距离处,一个尺寸为1μm的尘埃的表面电势演化(经John Wiley and Sons许可从文[64]中引用该图,© American Geophysical Union 1991)
  图4 某个粒子在土星磁层中的捕获过程(经John Wiley and Sons许可从文[69]中引用该图,© American Geophysical Union 2005)
[1] HORÁNYI M, SZALAY J R, KEMPF S, et al. A permanent, asymmetric dust cloud around the Moon[J]. Nature, 2015, 522(7556):324-326.
[2] SLíZ-BALOGH J, BARTA A, HORVÁTH G. Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5-Part II. Imaging polarimetric observation:New evidence for the existence of Kordylewski dust cloud[J]. Monthly Notices of the Royal Astronomical Society, 2018, 482(1):762-770.
[3] BURNS J A, HAMILTON D P, SHOWALTER M R. Dusty rings and circumplanetary dust:Observations and simple physics[M]//GRÜN E, GUSTAFSON B Å S, DERMOTT S, et al. Interplanetary Dust. Berlin:Springer, 2001:641-725.
[4] 李中元. 空间尘埃动力学的研究动向[J]. 天文学进展, 2001, 19(2):161-166. LI Z Y. A research in the space dust dynamics[J]. Progress in Astronomy, 2001, 19(2):161-166. (in Chinese)
[5] 石志东, 李中元. 太阳系尘埃等离子体研究[J]. 天文学进展, 1998, 16(3):227-236. SHI Z D, LI Z Y. Study on dust plasma in Solar System[J]. Progress in Astronomy, 1998, 16(3):227-236. (in Chinese)
[6] SPAHN F, SACHSE M, SEIß M, et al. Circumplanetary dust populations[J]. Space Science Reviews, 2019, 215(1):11.
[7] SZALAY J R, POPPE A R, AGARWAL J, et al. Dust phenomena relating to airless bodies[J]. Space Science Reviews, 2018, 214(5):98.
[8] KOSCHNY D, SOJA R H, ENGRAND C, et al. Interplanetary dust, meteoroids, meteors and meteorites[J]. Space Science Reviews, 2019, 215(4):34.
[9] 中国国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/OL].[2019-04-19]. http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html.China National Space Administration. Announcement of opportunities for scientific payloads and projects onboard asteroid exploration mission[EB/OL].[2019-04-19]. http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/content.html. (in Chinese)
[10] 赵呈选, 郭文瑾. 空间尘埃探测方案研究[J]. 真空与低温, 2013, 19(1):36-39. ZHAO C X, GUO W J. Scheme study of space dust particles detection[J]. Vacuum and Cryogenics, 2013, 19(1):36-39. (in Chinese)
[11] LIU X D, SCHMIDT J. Dust in the Jupiter system outside the rings[J]. Astrodynamics, 2019, 3(1):17-29.
[12] KOSCHNY D, GRÜN E. Impacts into ice-silicate mixtures:Crater morphologies, volumes, depth-to-diameter ratios, and yield[J]. Icarus, 2001, 154(2):391-401.
[13] KOSCHNY D, GRÜN E. Impacts into ice-silicate mixtures:Ejecta mass and size distributions[J]. Icarus, 2001, 154(2):402-411.
[14] KRIVOV A V, SREMČEVIĆ M, SPAHN F, et al. Impact-generated dust clouds around planetary satellites:Spherically symmetric case[J]. Planetary and Space Science, 2003, 51(3):251-269.
[15] KRÜGER H, KRIVOV A V, GRÜN E. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids[J]. Planetary and Space Science, 2000, 48(15):1457-1471.
[16] KRÜGER H, HORÁNYI M, KRIVOV A V, et al. Jovian dust:Streams, clouds and rings[M]//BAGENAL F, DOWLING T E, MCKINNON W B. Jupiter:The Planet, Satellites and Magnetosphere. Cambridge:Cambridge University Press, 2004:219-240.
[17] BUHL E, SOMMER F, POELCHAU M H, et al. Ejecta from experimental impact craters:Particle size distribution and fragmentation energy[J]. Icarus, 2014, 237:131-142.
[18] BURNS J A, LAMY P L, SOTER S. Radiation forces on small particles in the solar system[J]. Icarus, 1979, 40(1):1-48.
[19] MIGNARD F. Effects of radiation forces on dust particles in planetary rings[M]//GREENBERG R, BRAHIC A. Planetary Rings. Tucson:University of Arizona Press, 1984:333-366.
[20] MISHCHENKO M I, DLUGACH J M, YANOVITSKIJ E G, et al. Bidirectional reflectance of flat, optically thick particulate layers:An efficient radiative transfer solution and applications to snow and soil surfaces[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63(2-6):409-432.
[21] MISHCHENKO M I, TRAVIS L D, LACIS A A. Scattering, absorption, and emission of light by small particles[M]. Cambridge:Cambridge University Press, 2002.
[22] LIU X D, SACHSE M, SPAHN F, et al. Dynamics and distribution of Jovian dust ejected from the Galilean satellites[J]. Journal of Geophysical Research:Planets, 2016, 121(7):1141-1173.
[23] LIU X D, SCHMIDT J. Dust arcs in the region of Jupiter's Trojan asteroids[J]. Astronomy & Astrophysics, 2018, 609:A57.
[24] KRIVOV A V, WARDINSKI I, SPAHN F, et al. Dust on the outskirts of the Jovian system[J]. Icarus, 2002, 157(2):436-455.
[25] VERBISCER A J, SKRUTSKIE M F, HAMILTON D P. Saturn's largest ring[J]. Nature, 2009, 461(7267):1098-1100.
[26] JEWITT D C, MEECH K J. Surface brightness profiles of 10 comets[J]. The Astrophysical Journal, 1987, 317:992-1001.
[27] HAMILTON D P. Motion of dust in a planetary magnetosphere:Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring[J]. Icarus, 1993, 101(2):244-264.
[28] STERN D P. Representation of magnetic fields in space[J]. Reviews of Geophysics, 1976, 14(2):199-214.
[29] HORÁNYI M, MORFILL G, GRÜN E. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere[J]. Nature, 1993, 363(6425):144-146.
[30] HORÁNYI M, MORFILL G, GRÜN E. The dusty ballerina skirt of Jupiter[J]. Journal of Geophysical Research:Space Physics, 1993, 98(A12):21245-21251.
[31] GUSTAFSON B A S. Physics of zodiacal dust[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1):553-595.
[32] PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. The Astrophysical Journal, 1958, 128:664.
[33] LANDGRAF M. Modeling the motion and distribution of interstellar dust inside the heliosphere[J]. Journal of Geophysical Research:Space Physics, 2000, 105(A5):10303-10316.
[34] DRAINE B T, SALPETER E E. On the physics of dust grains in hot gas[J]. The Astrophysical Journal, 1979, 231:77-94.
[35] MORFILL G E, GRÜN E, JOHNSON T V. Dust in Jupiter's magnetosphere:Physical processes[J]. Planetary and Space Science, 1980, 28(12):1087-1100.
[36] KRESAK L. Orbital evolution of the dust streams released from comets[J]. Astronomical Institutes of Czechoslovakia, Bulletin, 1976, 27(1):35-46.
[37] JACKSON A A, ZOOK H A. Orbital evolution of dust particles from comets and asteroids[J]. Icarus, 1992, 97(1):70-84.
[38] LIOU J C, ZOOK H A. An asteroidal dust ring of micron-sized particles trapped in the 1:1 mean motion resonance with Jupiter[J]. Icarus, 1995, 113(2):403-414.
[39] LIU X D, SCHMIDT J. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust[J]. Astronomy & Astrophysics, 2018, 614:A97.
[40] KRIVOV A V, KRÜGER H, GRÜN E, et al. A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites[J]. Journal of Geophysical Research:Planets, 2002, 107(E1):5002.
[41] HAMILTON D P, KRIVOV A V. Circumplanetary dust dynamics:Effects of solar gravity, radiation pressure, planetary oblateness, and electromagnetism[J]. Icarus, 1996, 123(2):503-523.
[42] HAMILTON D P, KRIVOV A V. Dynamics of distant moons of asteroids[J]. Icarus, 1997, 128(1):241-249.
[43] DIKAREV V V. Dynamics of particles in Saturn's E ring:Effects of charge variations and the plasma drag force[J]. Astronomy and Astrophysics, 1999, 346:1011-1019.
[44] JUHÁSZ A, HORÁNYI M. Saturn's E ring:A dynamical approach[J]. Journal of Geophysical Research:Space Physics, 2002, 107(A6):SMP 1-1-SMP 1-10.
[45] HORÁNYI M. Charged dust dynamics in the Solar System[J]. Annual Review of Astronomy and Astrophysics, 1996, 34(1):383-418.
[46] STERNGLASS E J. Theory of secondary electron emission under electron bombardment:Scientific paper 6-94410-2-P9[R]. Pittsburgh:Westinghause Research Laboratories, 1957.
[47] KIMURA H, MANN I. Filtering of the interstellar dust flow near the heliopause:The importance of secondary electron emission for the grain charging[J]. Earth, Planets and Space, 1999, 51(11):1223-1232.
[48] CHOW V W, MENDIS D A, ROSENBERG M. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas[J]. Journal of Geophysical Research:Space Physics, 1993, 98(A11):19065-19076.
[49] DZHANOEV A R, SCHMIDT J, LIU X, et al. Charging of small grains in a space plasma:Application to Jovian stream particles[J]. Astronomy & Astrophysics, 2016, 591:A147.
[50] JURAC S, JOHNSON R E, DONN B. Monte Carlo calculations of the sputtering of grains:Enhanced sputtering of small grains[J]. The Astrophysical Journal, 1998, 503(1):247-252.
[51] JURAC S, JOHNSON R E, RICHARDSON J D. Saturn's E ring and production of the neutral torus[J]. Icarus, 2001, 149(2):384-396.
[52] JOHNSON R E, FAMÁ M, LIU M, et al. Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere[J]. Planetary and Space Science, 2008, 56(9):1238-1243.
[53] SITTLER E C JR, ANDRE N, BLANC M, et al. Ion and neutral sources and sinks within Saturn's inner magnetosphere:Cassini results[J]. Planetary and Space Science, 2008, 56(1):3-18.
[54] FAMÁ M, SHI J, BARAGIOLA R A. Sputtering of ice by low-energy ions[J]. Surface Science, 2008, 602(1):156-161.
[55] TAMAYO D, BURNS J A, HAMILTON D P, et al. Finding the trigger to Iapetus' odd global albedo pattern:Dynamics of dust from Saturn's irregular satellites[J]. Icarus, 2011, 215(1):260-278.
[56] HAMILTON D P, SKRUTSKIE M F, VERBISCER A J, et al. Small particles dominate Saturn's Phoebe ring to surprisingly large distances[J]. Nature, 2015, 522(7555):185-187.
[57] BOTTKE W F, VOKROUHLICKY D, NESVORNY D, et al. Black rain:The burial of the Galilean satellites in irregular satellite debris[J]. Icarus, 2013, 223(2):775-795.
[58] BURNS J A, SHOWALTER M R, HAMILTON D P, et al. The formation of Jupiter's faint rings[J]. Science, 1999, 284(5417):1146-1150.
[59] DIKAREV V V, KRIVOV A V, GRÜN E. Two stages of dust delivery from satellites to planetary rings[J]. Planetary and Space Science, 2006, 54(9-10):1014-1023.
[60] HAMILTON D P. A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances[J]. Icarus, 1994, 109(2):221-240.
[61] HEDMAN M M, MURRAY C D, COOPER N J, et al. Three tenuous rings/arcs for three tiny moons[J]. Icarus, 2009, 199(2):378-386.
[62] SUN K L, SEIß M, HEDMAN M M, et al. Dust in the arcs of Methone and Anthe[J]. Icarus, 2017, 284:206-215.
[63] SCHAFFER L, BURNS J A. Lorentz resonances and the vertical structure of dusty rings:Analytical and numerical results[J]. Icarus, 1992, 96(1):65-84.
[64] HORÁNYI M, BURNS J A. Charged dust dynamics:Orbital resonance due to planetary shadows[J]. Journal of Geophysical Research:Space Physics, 1991, 96(A11):19283-19289.
[65] HAMILTON D P, KRÜGER H. The sculpting of Jupiter's gossamer rings by its shadow[J]. Nature, 2008, 453(7191):72-75.
[66] ARTEM'EV A V. On the problem of magnetogravitational capture[J]. Solar System Research, 1968, 2:202-213.
[67] MENDIS D A, AXFORD W I. Satellites and magnetospheres of the outer planets[J]. Annual Review of Earth and Planetary Sciences, 1974, 2(1):419-474.
[68] COLWELL J E, HORÁNYI M, GRÜN E. Capture of interplanetary and interstellar dust by the Jovian magnetosphere[J]. Science, 1998, 280(5360):88-91.
[69] MITCHELL C J, COLWELL J E, HORÁNYI M. Tenuous ring formation by the capture of interplanetary dust at Saturn[J]. Journal of Geophysical Research:Space Physics, 2005, 110(A9):A09218.
[70] COLWELL J E, HORÁNYI M. Magnetospheric effects on micrometeoroid fluxes[J]. Journal of Geophysical Research:Planets, 1996, 101(E1):2169-2175.
[71] COLWELL J E, HORÁNYI M, GRÜN E. Jupiter's exogenic dust ring[J]. Journal of Geophysical Research:Planets, 1998, 103(E9):20023-20030.
[72] HORÁNYI M. New Jovian ring?[J]. Geophysical Research Letters, 1994, 21(11):1039-1042.
[73] MITCHELL C J, COLWELL J E, HORÁNYI M. Dust capture by the Saturnian magnetosphere[J]. IEEE Transactions on Plasma Science, 2004, 32(2):598-600.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn