Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (4): 341-347    DOI: 10.16511/j.cnki.qhdxxb.2019.26.047
  物理与物理工程 本期目录 | 过刊浏览 | 高级检索 |
利用脱气膜技术检测水中14C
何敬涛1, 梁漫春1, 陈安滢1, 岳峰2, 何水军1
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 中国生态环境部 核与辐射安全中心, 北京 100010
Degassing membrane for 14C detection in water
HE Jingtao1, LIANG Manchun1, CHEN Anying1, YUE Feng2, HE Shuijun1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Nuclear and Radiation Safety Center, Ministry of Ecology andEnvironment of the People's Republic of China, Beijing 100010, China
全文: PDF(2299 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对目前较为流行的水中14C检测方法的氮气消耗量大、耗时较长等问题,该文将脱气膜技术引入水中14C的检测。设计了一套可行的采用脱气膜技术的水中14C分离装置,并通过实验验证了该装置在酸性条件下工作的可行性,分析了该装置的影响因素、氮气消耗、耗时等性能。实验结果表明:采用脱气膜技术的水中14C分离方法对无机碳回收率达到95%,耗时短,氮气消耗少,应用于水中14C检测具有明确优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何敬涛
梁漫春
陈安滢
岳峰
何水军
关键词 放射性核素分析脱气膜技术水中14C检测    
Abstract:Current methods for detecting 14C in water are very slow and use large amounts of nitrogen. This study used a degassing membrane to improve the 14C detection in water. A 14C water separation device built using the degassing membrane was evaluated experimentally for acidic conditions to evaluate the effects of various factors on the nitrogen consumption and time. The experimental results show that the 14C separation in water using the degassing membrane has a 95% inorganic carbon recovery rate with short operating times and less nitrogen consumption.
Key wordsradionuclide analysis    degassing membrane technology    14C detection
收稿日期: 2019-04-10      出版日期: 2020-04-03
基金资助:国家重大科学仪器专项(2016YFF0103900)
通讯作者: 岳峰,高级工程师,E-mail:yuefeng1981@139.com     E-mail: yuefeng1981@139.com
引用本文:   
何敬涛, 梁漫春, 陈安滢, 岳峰, 何水军. 利用脱气膜技术检测水中14C[J]. 清华大学学报(自然科学版), 2020, 60(4): 341-347.
HE Jingtao, LIANG Manchun, CHEN Anying, YUE Feng, HE Shuijun. Degassing membrane for 14C detection in water. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 341-347.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.047  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I4/341
  图1 脱气膜原理
  图2 脱气膜双膜扩散模型
  图3 直接加酸式脱气膜水中1 4C分离装置
  图4 采用脱气膜的水中14C分离装置(比例加酸式)
  表1 酸性条件下脱气膜分离效果实验条件
  表2 酸性条件下脱气膜分离效果实验结果
  表3 样品液相侧流速对装置回收率影响实验结果
  图5 回收率 样品液相侧流速关系曲线
  表4 样品无机碳浓度对装置回收率影响实验结果
  图6 脱气膜水中1 4C分离装置氮气消耗
  图7 脱气膜水中1 4C分离装置耗时
[1] SVETLIK I, FEJGL M, POVINEC P P, et al. Determination of chemical forms of 14C in liquid discharges from nuclear power plants[J]. Journal of Environmental Radioactivity, 2017, 177:256-260.
[2] 潘自强. 电离辐射环境监测与评价[M]. 北京:原子能出版社, 2007. PAN Z Q. Environmental monitoring and evaluation of ionizing radiation[M]. Beijing:Atomic Energy Press, 2007. (in Chinese)
[3] 孟莉萍, 保莉, 杨海兰, 等. 水中14C的样品制备与分析方法研究[J]. 环境科学与管理, 2017, 42(8):139-142. MENG L P, BAO L, YANG H L, et al. Preparation and analysis of radiocarbon in water sample[J]. Environmental Science and Management, 2017, 42(8):139-142. (in Chinese)
[4] 苏州热工研究院有限公司, 环境保护部核与辐射安全中心. 核动力厂环境辐射防护规定:GB6249-2011[S]. 北京:中国标准出版社, 2011 Suzhou Nuclear Power Research Institute, Nuclear and Radiation Safety Center. Regulations for environmental radiation protection of nuclear power plant:GB6249-2011[S]. Beijing:Standards Press of China, 2011(in Chinese)
[5] 环境保护部核与辐射安全中心, 苏州热工研究院有限公司. 核电厂放射性液态流出物排放技术要求:GB 14587-2011[S]. 北京:中国环境科学出版社, 2011. Nuclear and Radiation Safety Center, Suzhou Nuclear Power Research Institute. Technical requirements for discharge of radioactive liquid effluents from nuclear power plant:GB 14587-2011[S]. Beijing:China Environmental Press, 2011. (in Chinese)
[6] 国家能源局. 核电厂环境放射性本底调查技术规范:NB/T20139-2012[S]. 北京:原子能出版社, 2012 National Energy Administration. Technical criteria for environmental radioactivity background investigation for nuclear power plant:NB/T20139-2012[S]. Beijing:Atomic Energy Press, 2012. (in Chinese)
[7] 国家质量监督检验检疫总局, 环境保护部. 水中14C分析方法-湿法氧化法[EB/OL].[2019-03-10].http://www.mee.gov.cn/gkml/hbb/bgth/201702/W020170206342846093483.pdf. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Ministry of Environmental Protection. Analytical method of 14C in water-wet oxidation method[EB/OL].[2019-03-10]. http://www.mee.gov.cn/gkml/hbb/bgth/201702/W020170206342846093483.Pdf.(in Chinese)
[8] 郭贵银, 黄彦君, 张兵, 等. 用湿法氧化预处理进行水中14C分析研究[J]. 辐射防护, 2015, 35(6):339-344. GUO G Y, HUANG Y J, ZHANG B, et al. Analysis of 14C in environmental water based on wet-oxidation pretreatment[J]. Radiation Protection, 2015, 35(6):339-344. (in Chinese)
[9] 杨海兰, 保莉, 马雄楠, 等. 鼓泡法结合CO2直接吸收法进行环境水中无机14C的分析方法研究[J]. 辐射防护, 2016, 36(4):240-243, 261. YANG H L, BAO L, MA X N, et al. Research for the determination of radiocarbon in environmental water by bubbling and CO2 direct absorption[J]. Radiation Protection, 2016, 36(4):240-243, 261. (in Chinese)
[10] CARON F O, BENZ M L. Analysis and processing of samples for a carbon-14 monitoring program at a radioactive waste storage site[J]. The Analyst, 2002, 127(8):1121-1128.
[11] 李斌, 罗茂丹. 水中14C取样与测量方法的实验研究[J]. 四川环境, 2011, 30(4):13-16. LI B, LUO M D. Mehodology of sampling and determining 14C in water[J]. Sichuan Environment, 2011, 30(4):13-16. (in Chinese)
[12] AHN H J, SONG B C, SOHN S C, et al. Application of a wet oxidation method for the quantification of 3H and 14C in low-level radwastes[J]. Applied Radiation and Isotopes, 2013, 81:62-66.
[13] HUANG Y J, GUO G Y, WU L S, et al. An analytical method for 14C in environmental water based on a wet-oxidation process[J]. Journal of Environmental Radioactivity, 2015, 142:1-8.
[14] CALMET D, AMEON R, BOMBARD A, et al. ISO standards on test methods for water radioactivity monitoring[J]. Applied Radiation and Isotopes, 2013, 81:21-25.
[15] MCCARTT A D, OGNIBENE T, BENCH G, et al. Measurements of carbon-14 with cavity ring-down spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361:277-280.
[16] NAKHJIRI A T, HEYDARINASAB A, BAKHTIARI O, et al. The effect of membrane pores wettability on CO2 removal from CO2/CH4 gaseous mixture using NaOH, MEA and TEA liquid absorbents in hollow fiber membrane contactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(9):1845-1861.
[17] 吴津京. 脱气膜在给水处理中的研究与应用[D]. 北京:北京交通大学, 2007. WU J J. Study on degas treatment of feedwater by hollow fiber membrane[D]. Beijing:Beijing Jiaotong University, 2007. (in Chinese)
[18] CHO H, KIM J, HAN K H. An assembly disposable degassing microfluidic device using a gas-permeable hydrophobic membrane and a reusable microsupport array[J]. Sensors and Actuators B:Chemical, 2019, 286:353-361.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn