Abstract:Polyelectrolytes are charged polymers that are widely used in biomedical applications. This paper reviews various polyelectrolyte lubrication coatings. This review introduces the lubrication mechanisms and polyelectrolyte classifications which are based on the polyelectrolyte brush and hydration lubrication mechanisms. Then, the polyelectrolytes are divided into three categories. The review also describes how the polyelectrolytes adhere to the substrates through physical methods, coupled grafting and initiation grafting. The initiation grafting is described in detail as a reference for the design of polyelectrolyte lubrication coatings. Finally, the potential for polyelectrolyte lubrication coatings in the biomedical field is discussed with future prospects.
[1] BENETTI E M, SPENCER N D. Using polymers to impart lubricity and biopassivity to surfaces:Are these properties linked?[J]. Helvetica Chimica Acta, 2019, 102(5):e1900071. [2] MAGIN C M, COOPER S P, BRENNAN A B. Non-toxic antifouling strategies[J]. Materials Today, 2010, 13(4):36-44. [3] ZHAO B, BRITTAIN W J. Polymer brushes:Surface-immobilized macromolecules[J]. Progress in Polymer Science, 2000, 25(5):677-710. [4] CHEN W L, CORDERO R, TRAN H, et al. 50th anniversary perspective:Polymer brushes:Novel surfaces for future materials[J]. Macromolecules, 2017, 50(11):4089-4113. [5] ZHULINA E B, RUBINSTEIN M. Lubrication by polyelectrolyte brushes[J]. Macromolecules, 2014, 47(16):5825-5838. [6] LI B, YU B, WANG X L, et al. Correlation between conformation change of polyelectrolyte brushes and lubrication[J]. Chinese Journal of Polymer Science, 2015, 33(1):163-172. [7] 魏强兵, 蔡美荣, 周峰. 表面接枝聚合物刷与仿生水润滑研究进展[J]. 高分子学报, 2012(10):1102-1107. WEI Q B, CAI M R, ZHOU F. Progress on surface grafted polymer brushes for biomimetic lubrication[J]. Acta Polymerica Sinica, 2012(10):1102-1107. (in Chinese) [8] RAVIV U, GIASSON S, KAMPF N, et al. Lubrication by charged polymers[J]. Nature, 2003, 425(6954):163-165. [9] KREER T. Polymer-brush lubrication:A review of recent theoretical advances[J]. Soft Matter, 2016, 12(15):3479-3501. [10] LIU G Q, LIU Z L, LI N, et al. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment[J]. ACS Applied Materials & Interfaces, 2014, 6(22):20452-20463. [11] HAN L B, YAN B, ZHANG L, et al. Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 539:37-45. [12] YU J, JACKSON N E, XU X, et al. Multivalent counterions diminish the lubricity of polyelectrolyte brushes[J]. Science, 2018, 360(6396):1434-1438. [13] WEI Q B, CAI M R, ZHOU F, et al. Dramatically tuning friction using responsive polyelectrolyte brushes[J]. Macromolecules, 2013, 46(23):9368-9379. [14] KLEIN J. Hydration lubrication[J]. Friction, 2013, 1(1):1-23. [15] JAHN S, SEROR J, KLEIN J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18:235-258. [16] JIANG T, MOGHADDAM S Z, THORMANN E. PPEGMEMA-based cationic copolymers designed for layer-by-layer assembly[J]. RSC Advances, 2019, 9(46):26915-26926. [17] ETCHENAUSIA L, VILLAR-ALVAREZ E, FORCADA J, et al. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers[J]. Materials Science and Engineering C, 2019, 104:109871. [18] WU J H, ZHANG D, ZHANG L X, et al. Long-term stability and salt-responsive behavior of polyzwitterionic brushes with cross-linked structure[J]. Progress in Organic Coatings, 2019, 134:153-161. [19] ZHANG Y X, LIU Y L, REN B P, et al. Fundamentals and applications of zwitterionic antifouling polymers[J]. Journal of Physics D:Applied Physics, 2019, 52(40):403001. [20] 滕杰. 导管血栓形成的解决方案——带肝素涂层一次性血液透析导管特性介绍[J]. 上海医学, 2014, 37(5):448-449. TENG J. The solution of catheter thrombosis-introduction of the characteristics of disposable hemodialysis catheter with heparin coating[J]. Shanghai Medical Journal, 2014, 37(5):4048-449. (in Chinese) [21] XIAO S W, REN B P, HUANG L, et al. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property[J]. Current Opinion in Chemical Engineering, 2018, 19:86-93. [22] 刘艳, 徐立霞, 李昕跃. 医用高分子材料表面润滑性的研究状况[J]. 大连大学学报, 2012, 33(6):46-51. LIU Y, XU L X, LI X Y. The research progress of medical polymer material surface lubricity[J]. Journal of Dalian University, 2012, 33(6):46-51. (in Chinese) [23] 约瑟夫·查尔斯, 萨拉莫内, 凯特琳·伊丽莎白·瑞利, 安·比尔·萨拉莫内, 等. 非自粘接涂层材料:CN105979973B. 2019-08-23. SALAMONE J C, RAYLEIGH C E, SALAMONE A B, et al. Non self-adhesive coating material:CN105979973B. 2019-08-23. (in Chinese) [24] 汪亮. 浅谈医用生物高分子材料的表面改性[J]. 科技风, 2018(4):47. WANG L. Surface modification of medical biopolymer materials[J]. Technology Wind, 2018(4):47. (in Chinese) [25] MORGESE G, VERBRAEKEN B, RAMAKRISHNA S N, et al. Chemical design of non-ionic polymer brushes as biointerfaces:Poly (2-oxazine)s outperform both poly (2-oxazoline)s and PEG[J]. Angewandte Chemie-International Edition, 2018, 57(36):11667-11672. [26] 杨万泰, 尹梅贞, 邓建元, 等. 表面光接枝原理、方法及应用前景[J]. 高分子通报, 1999(1):60-65, 84. YANG W T, YIN M J, DENG J Y, et al. Principle, process and application prospect of surface photo grafting[J]. Polymer Bulletin, 1999(1):60-65, 84. (in Chinese) [27] 邢晓东, 王晓工. 聚合物表面紫外光接枝技术及应用进展[J]. 化工进展, 2008, 27(1):50-56, 73. XING X D, WANG X G. Advance in polymer surface modification by UV-induced photo-grafting polymerization[J]. Chemical Industry and Engineering Progress, 2008, 27(1):50-56, 73. (in Chinese) [28] KYOMOTO M, MORO T, SAIGA K, et al. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials[J]. Biomaterials, 2012, 33(18):4451-4459. [29] UKITA R, WU K, LIN X J, et al. Zwitterionic poly-carboxybetaine coating reduces artificial lung thrombosis in sheep and rabbits[J]. Acta Biomaterialia, 2019, 92:71-81. [30] 林全愧, 计剑, 谭庆刚, 等. 层层自组装技术在生物医用材料领域中的应用研究进展[J]. 高分子通报, 2006(8):58-63. LIN Q K, JI J, TAN Q G, et al. Progress on layer-by-layer self-assemble technique in surface design of biomaterials[J]. Chinese Polymer Bulletin, 2006(8):58-63. (in Chinese) [31] 时雅滨, 许晓娟, 贾启华, 等. 层层自组装技术制备新型功能高分子材料研究进展[J]. 化工新型材料, 2019, 47(9):11-13, 18. SHI Y B, XU X J, JIA Q H, et al. Research on the preparation of new functional polymer material by layer-by-layer self-assembly[J]. New Chemical Materials, 2019, 47(9):11-13, 18. (in Chinese) [32] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430. [33] 魏强兵, 岳芹宇, 李乐乐, 等. 聚多巴胺辅助两性离子聚合物界面组装制备水润滑纳米涂层[J]. 摩擦学学报, 2019, 39(4):387-395. WEI Q B, YUE Q Y, LI L L, et al. Polydopamine assisted co-assembly for fabrication of zwitterionic polymer nanocoating with efficient aqueous lubrication[J]. Tribology, 2019, 39(4):387-395. (in Chinese) [34] LIU S Z, ZHANG Q, HAN Y, et al. Bioinspired surface functionalization of titanium alloy for enhanced lubrication and bacterial resistance[J]. Langmuir, 2019, 35(40):13189-13195. [35] 尹玉霞, 李茂全, 周超, 等. 植入性医疗器械的研究进展[J]. 中国医疗设备, 2018, 33(7):111-115. YIN Y X, LI M Q, ZHOU C, et al. Advances in the research of implantable medical devices[J]. China Medical Devices, 2018, 33(7):111-115. (in Chinese) [36] MATTEI L, DI PUCCIO F, PICCIGALLO B, et al. Lubrication and wear modelling of artificial hip joints:A review[J]. Tribology International, 2011, 44(5):532-549. [37] ISHIHARA K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design[J]. Polymer Journal, 2015, 47(9):585-597. [38] SONG J, LIU Y H, LIAO Z H, et al. Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V[J]. Materials Science and Engineering C, 2016, 69:985-994. [39] 封亮廷, 王小妹, 伍雪芬. 亲水润滑涂料的制备及在医用聚氨酯导管中的应用[J]. 应用化工, 2017, 46(5):1017-1019, 1023. FENG L T, WANG X M, WU X F. Preparation of hydrophilic lubricating coating and its application in medical polyurethane catheter[J]. Applied Chemical Industry, 2017, 46(5):1017-1019, 1023. (in Chinese) [40] YU Y, YUK H, PARADA G A, et al. Multifunctional "hydrogel skins" on diverse polymers with arbitrary shapes[J]. Advanced Materials, 2019, 31(7):1807101. [41] 赵兵, 刘晓红, 袁婷. 介入导丝表面亲水润滑处理研究进展[J]. 中国医疗器械杂志, 2015, 39(1):44-47. ZHAO B, LIU X H, YUAN T. Research development of surface hydrophilicity and lubrication modification of interventional guide wire[J]. Chinese Journal of Medical Instrumentation, 2015, 39(1):44-47. (in Chinese) [42] 熊伟, 王慧宾, 谭潇啸, 等. 载二氢杨梅素三元复合脂质体的构建及其性能研究[J]. 食品工业, 2017, 38(12):190-193. XIONG W, WANG H B, TAN X X, et al. Study on the construction of dihydromyricetin triplex complex liposomes and its properties[J]. The Food Industry, 2017, 38(12):190-193. (in Chinese) [43] DE COCK L J, DE KOKER S, DE GEEST B G, et al. Polymeric multilayer capsules in drug delivery[J]. Angewandte Chemie-International Edition, 2010, 49(39):6954-6973.