Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (9): 763-772    DOI: 10.16511/j.cnki.qhdxxb.2020.25.021
  电机工程 本期目录 | 过刊浏览 | 高级检索 |
基于离散状态事件驱动仿真方法的牵引变流器能量平衡控制策略
鞠佳禾1, 赵争鸣1, 施博辰1, 朱义诚1, 虞竹珺1, 罗云飞2, 张志学2, 胡斯登3, 何湘宁3
1. 清华大学 电机工程与应用电子技术系, 电力系统及发电设备安全控制和仿真国家重点实验室, 北京 100084;
2. 中车株洲电力机车研究所有限公司, 株洲 412000;
3. 浙江大学 电气工程学院, 杭州 310027
Energy balancing control for locomotive converter based on a discrete state event driven method
JU Jiahe1, ZHAO Zhengming1, SHI Bochen1, ZHU Yicheng1, YU Zhujun1, LUO Yunfei2, ZHANG Zhixue2, HU Sideng3, HE Xiangning3
1. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou 412000, China;
3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(1882 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目前,面向牵引的电力电子变换器应用广泛,但是这类大功率装置对可靠性的要求较高,并且需要避免器件应力导致的过压问题,因而对直流母线电压的稳定性提出了很高的要求。由于牵引变流器的工况随着机车运行情况的变化而变化,因此其单向整流器的控制策略应具有可靠的高性能,以保证直流母线电压的抗扰性和随动性。该文提出针对牵引变流器的单相整流器能量平衡控制策略,该策略能够提高单相整流器动态性能。在研究控制策略的过程中,需要进行多组参数的对比测试以及多种工况的仿真,因此需要一种高效、高精度、收敛性好的仿真工具。该文利用离散状态事件驱动(discrete state event driven,DSED)仿真方法,针对牵引变流器搭建了数值仿真平台,在同平台实现了多时间尺度(系统级动态过程和器件级瞬态过程)的高效、准确仿真评估。基于DSED牵引变流器仿真平台,将单相能量平衡控制与经典PI控制方法进行了对比。实验结果表明:能量平衡控制在各类动态过程中均表现出响应速度快,有效抑制直流母线波动的特点。同时,结合能量平衡控制与模组电容连接母排结构,能够明显减小关断电应力和器件使用所需留出的余量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠佳禾
赵争鸣
施博辰
朱义诚
虞竹珺
罗云飞
张志学
胡斯登
何湘宁
关键词 牵引变流器能量平衡控制离散状态事件驱动(DSED)电力电子仿真    
Abstract:Traction-oriented power electronic converters that are widely used in electric locomotives need to be very reliable and to avoid over-voltage problems caused by device stresses, so such devices need very stable DC bus voltages. Since the traction converter parameters are functions of the locomotive operating conditions, the single-phase rectifier control strategy must be very reliable to ensure the DC bus voltage stability. This paper presents an energy balancing control strategy for a single-phase rectifier for a traction converter which improves the converter dynamics. The control strategy needs to be tested for many different parameters and working conditions. A discrete state event driven (DSED) simulation method was used here in a numerical simulation platform for the traction converter for efficient, accurate multiple time scale (system level dynamic processes and device level transient processes) simulations. The traction converter simulation platform was used to compare the single-phase energy balance control with traditional PI control. The energy balance control is fast and effectively suppresses the DC bus fluctuations for all kinds of dynamic processes. Combining the energy balance control with the bus structure optimization also significantly reduces the turn-off electric force and allowance for the device.
Key wordslocomotive converter    energy balance control    discrete state event driven (DSED)    power electronics simulation
收稿日期: 2019-10-28      出版日期: 2020-07-04
基金资助:赵争鸣,教授,E-mail:zhaozm@tsinghua.edu.cn
引用本文:   
鞠佳禾, 赵争鸣, 施博辰, 朱义诚, 虞竹珺, 罗云飞, 张志学, 胡斯登, 何湘宁. 基于离散状态事件驱动仿真方法的牵引变流器能量平衡控制策略[J]. 清华大学学报(自然科学版), 2020, 60(9): 763-772.
JU Jiahe, ZHAO Zhengming, SHI Bochen, ZHU Yicheng, YU Zhujun, LUO Yunfei, ZHANG Zhixue, HU Sideng, HE Xiangning. Energy balancing control for locomotive converter based on a discrete state event driven method. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 763-772.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.021  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I9/763
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 吴新红. 混合动力动车组牵引及辅助变流器系统分析[J]. 城市轨道交通研究, 2018, 21(11):119-123. WU X H. Analysis of traction converter unit and auxiliary converter unit systems in hybrid EMU[J]. Urban Mass Transit, 2018, 21(11):119-123. (in Chinese)
[2] 陈亚爱, 石永帅, 周京华, 等. 电力电子牵引变压器拓扑结构综述[J]. 电气传动, 2018, 48(10):89-96. CHEN Y A, SHI Y S, ZHOU J H, et al. Overview of topological structure for power electronic traction transformer[J]. Electric Drive, 2018, 48(10):89-96. (in Chinese)
[3] 谢宝成. 电力电子牵引变压器的工作原理及建模分析[J]. 自动化与仪器仪表, 2018(8):134-136. XIE B C. Working principle and modeling analysis of power electronic traction transformer[J]. Automation & Instrumentation, 2018(8):134-136. (in Chinese)
[4] 夏焰坤. 电力电子变压器的高速铁路同相供电系统及控制方法[J]. 电力系统及其自动化学报, 2019, 31(5):98-102. XIA Y K. Cophase power supply system for high-speed railway based on power electronic transformer and its control method[J]. Proceedings of the CSU-EPSA, 2019, 31(5):98-102. (in Chinese)
[5] 戈旺. 基于电力电子变压器的新型牵引系统分析与控制[D]. 南昌:华东交通大学, 2018. GE W. Analysis and control of new traction system based on power electronic transformer[D]. Nanchang:East China Jiaotong University, 2018. (in Chinese)
[6] 赵争鸣, 袁立强, 鲁挺, 等. 我国大容量电力电子技术与应用发展综述[J]. 电气工程学报, 2015, 10(4):26-34. ZHAO Z M, YUAN L Q, LU T, et al. Overview of the developments on high power electronic technologies and applications in China[J]. Journal of Electrical Engineering, 2015, 10(4):26-34. (in Chinese)
[7] 赵争鸣, 施博辰, 朱义诚. 对电力电子学的再认识——历史、现状及发展[J]. 电工技术学报, 2017, 32(12):5-15. ZHAO Z M, SHI B C, ZHU Y C. Reconsideration on power electronics:the past, present and future[J]. Transactions of China Electrotechnical Society, 2017, 32(12):5-15. (in Chinese)
[8] 赵争鸣, 袁立强, 鲁挺. 电力电子系统电磁瞬态过程[M]. 北京:清华大学出版社, 2017. ZHAO Z M, YUAN L Q, LU T. The electromagnetic transient process of power electronic system[M]. Beijing:Tsinghua University Press, 2017. (in Chinese)
[9] HE F B, ZHAO Z M, LU T, et al. Predictive DC voltage control for three-phase grid-connected PV inverters based on energy balance modeling[C]//The 2nd International Symposium on Power Electronics for Distributed Generation Systems. Hefei, China:IEEE, 2010:516-519.
[10] 尹璐. 基于能量平衡的四象限双PWM变频器控制策略研究[D]. 北京:清华大学, 2013.YIN L. Research on control strategy of four quadrant dual PWM inverter based on energy balance control[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[11] 贺凡波. 大规模太阳能光伏并网发电系统电气设计与综合控制[D]. 北京:清华大学, 2012. HE F B. Electrical design and integrated control of large-scale photovoltaic grid connected power generation system[D]. Beijing:Tsinghua University, 2012. (in Chinese)
[12] SHI B C, ZHAO Z M, ZHU Y C. Piecewise analytical transient model for power switching device commutation unit[J]. IEEE Transactions on Power Electronics, 2018, 34(6):5720-5736.
[13] LI B Y, ZHAO Z M, YANG Y, et al. A novel simulation method for power electronics:Discrete state event driven method[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3):273-282.
[14] 杨祎, 赵争鸣, 檀添, 等. 离散状态事件驱动仿真方法及自适应预估校正算法[J]. 电工技术学报, 2017, 32(12):33-41. YANG Y, ZHAO Z M, TAN T, et al. Discrete state event driven method and self-adapted predictor-corrector algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(12):33-41. (in Chinese)
[15] 李帛洋, 赵争鸣, 檀添, 等. 后向离散状态事件驱动电力电子仿真方法[J]. 电工技术学报, 2017, 32(12):42-49. LI B Y, ZHAO Z M, TAN T, et al. A backword discrete state event driven simulation method for power electronics based on finite state machine[J]. Transactions of China Electrotechnical Society, 2017, 32(12):42-49. (in Chinese)
[16] ZHU Y C, ZHAO Z M, SHI B C, et al. Discrete state event-driven framework with a flexible adaptive algorithm for simulation of power electronic systems[J]. IEEE Transactions on Power Electronics, 2019, 34(12):11692-11705.
[17] 施博辰, 赵争鸣, 朱义诚, 等. 离散状态事件驱动仿真方法在高压大容量电力电子变换系统中的应用[J]. 高电压技术, 2019, 45(7):2053-2061. SHI B C, ZHAO Z M, ZHU Y C, et al. Application of discrete state event-driven simulation framework in high-voltage power electron-is hybrid systems[J]. High Voltage Engineering, 2019, 45(7):2053-2061. (in Chinese)
[18] 赵争鸣, 袁立强. 电力电子与电机系统集成分析基础[M]. 北京:机械工业出版社, 2009. ZHAO Z M, YUAN L Q. Lntegrated analysis of power electronics and motor drive system[M]. Beijing:Mechanical Industry Press, 2009. (in Chinese)
[1] 聂浩哲, 沈瑜, 赵争鸣, 文武松, 袁立强. 四端口电力电子变压器高压交流端口的低电压穿越功能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1097-1105.
[2] 石冰清, 赵争鸣, 袁立强, 冯高辉. 能量平衡控制的稳态误差和全局稳定性分析[J]. 清华大学学报(自然科学版), 2020, 60(9): 740-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn