Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 11-20    DOI: 10.16511/j.cnki.qhdxxb.2020.22.021
  专题:汽车部件 本期目录 | 过刊浏览 | 高级检索 |
双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析
徐文雪,吕振华*()
清华大学 车辆与运载学院, 北京 100084
Three-dimensional FSI-FE simulation of the damping characteristics of a twin gas-chamber hydraulic damper
Wenxue XU,Zhenhua LÜ*()
School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(17070 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

利用双气室式液阻减振器的较精细三维流-固耦合有限元仿真分析模型获得了减振器的高速阻尼特性,并进行了实验验证。系统地分析了双气室式液阻减振器在不同初始气室容积、初始充气压强下的高速阻尼特性,并与相应的单气室式液阻减振器的阻尼特性进行了对比。单气室式液阻减振器压缩室内气室会增加压缩行程中油液的空化可能性,双气室式液阻减振器可克服这一问题,但会导致行程初期阻尼力的延迟反向。选择较小气室容积、较大充气压强的参数匹配方案可获得较好的阻尼特性;阻尼力反向迟滞时长比值随活塞振动频率的增大而增大;在活塞位移幅值相同的工况下,压缩行程迟滞阻尼力比值随频率的增大(2.5~15 Hz)而减小,伸张行程迟滞阻尼力比值随着活塞振动频率的增大先增大(2.5~10 Hz)、后减小(10~15 Hz)。该研究结果对于双气室式液阻减振器的设计具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐文雪
吕振华
关键词 双气室式液阻减振器流-固耦合有限元仿真阻尼特性畸变气室参数匹配    
Abstract

A three-dimensional fluid-structure interaction (FSI) finite element model of a twin gas-chamber hydraulic damper was used to study the high-speed damping characteristics of the damper. The numerical results agreed well with experimental data. The damping characteristics were analyzed for various initial gas chamber volumes and initial pressures with comparisons with a single gas-chamber hydraulic damper. A single pressurized gas sub-chamber in the compression chamber of a monotube hydraulic damper results in more oil cavitation during the compression stroke. The twin gas-chamber hydraulic damper overcomes this problem but still has delayed reverse damping in both the compression and extension strokes. This problem can be reduced by using smaller gas chambers with higher initial gas pressures. The time delay ratio of the damping force reverse increases with increasing piston vibration frequency. The damping force reverse delay ratio in the compression stroke decreases with increasing piston vibration frequency (2.5~15 Hz) for the same vibration displacement, but this ratio in the extension stroke first increases (2.5~10 Hz) and then decreases (10~15 Hz) with increasing frequency. These characteristics are important when designing twin gas-chamber hydraulic dampers.

Key wordstwin gas-chamber hydraulic damper    fluid-structure interaction    finite-element simulation    damping characteristics distortion    gas chamber parameter matching
收稿日期: 2020-05-09      出版日期: 2020-11-26
通讯作者: 吕振华     E-mail: lvzh@tsinghua.edu.cn
引用本文:   
徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
Wenxue XU,Zhenhua LÜ. Three-dimensional FSI-FE simulation of the damping characteristics of a twin gas-chamber hydraulic damper. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 11-20.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.021  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/11
  双气室式液阻减振器结构示意图及有限元网格模型
10.16511/j.cnki.qhdxxb.2020.22.021.T001

材料参数

固体(铝合金) 固体(钢) 油液 气体
参数 参数 参数 参数
密度/(kg·m-3) 2 700 密度/(kg·m-3) 7 800 密度/(kg·m-3) 832 密度/(kg·m-3) 1.13
弹性模量/GPa 69 弹性模量/GPa 210 动力黏度/(Pa·s) 0.017 定压比热容/(J·kg-1·K-1) 1 042
Poisson比 0.33 Poisson比 0.3 体积弹性模量/MPa 1 500 定容比热容/(J·kg-1·K-1) 745
  
材料参数
  双气室式液阻减振器试样
  实验测试系统
  阀系结构
  阀板压紧弹簧弹性力
10.16511/j.cnki.qhdxxb.2020.22.021.T002

实验测试工况

工况 v/(m·s-1) A/mm f/Hz p0/MPa
1 0.5 40 2 2.4
2 1.0 40 4 2.4
3 1.5 40 6 2.9
4 2.0 40 8 3.7

  注:v为活塞速度幅值,A为活塞位移幅值,f为活塞振动频率,p0为气室初始压强。

  
实验测试工况
  双气室式液阻减振器的阻尼特性
  气室内气体压强-时间历程
  重新分配后的阀板压紧弹簧弹性力
10.16511/j.cnki.qhdxxb.2020.22.021.T003

参数配置方案

方案 V1/L V2/L p0/MPa
1 0.038 0.019 1.0
2 0.055 0.027 1.0
3 0.189 0.094 1.0
4 0.027 0.055 1.0
5 0.055 0.027 0.5
6 0.055 0.027 2.0
7 0.082 0 1.0

  注:V1代表压缩室内气室初始容积,V2代表伸张压缩室内气室初始容积。

  
参数配置方案
  不同参数配置方案的充气式液阻减振器的阻尼特性
10.16511/j.cnki.qhdxxb.2020.22.021.T004

双气室式液阻减振器阻尼力反向迟滞特性

工况 Fe/kN Fmax/kN ηF te/s ηt μd/(kN·s-1)
伸张行程阻尼力反向迟滞 1 3.802 25.476 0.149 0.003 7 0.074 1 014
2 4.522 25.459 0.178 0.004 8 0.096 942.1
3 7.779 25.144 0.309 0.010 2 0.204 758.9
4 6.831 25.503 0.268 0.007 4 0.148 923.1
5 5.280 25.540 0.207 0.005 8 0.116 734.0
6 4.091 25.254 0.162 0.003 4 0.068 1 203
压缩行程阻尼力反向迟滞 1 -1.231 -11.263 0.109 0.001 9 0.038 647.9
2 -1.729 -11.202 0.154 0.002 9 0.058 596.2
3 -4.330 -8.823 0.491 0.009 4 0.188 458.2
4 -1.416 -11.422 0.124 0.002 3 0.046 615.6
5 -2.257 -11.039 0.204 0.004 8 0.096 470.2
6 -1.446 -11.288 0.128 0.002 1 0.042 688.6
  
双气室式液阻减振器阻尼力反向迟滞特性
  不同的初始气室容积下的流-固耦合响应(p0=1 MPa)   不同的初始气室充气压强下的流-固耦合响应(V1=0.055 L,V2=0.027 L)   阀系附近流体压强场(MPa)   阀系附近流体速度矢量场(mm/s)   缝隙中流体压强分布(MPa)
10.16511/j.cnki.qhdxxb.2020.22.021.T005

仿真分析工况

工况 v A f
m·s-1 mm Hz
1 0.5 32 2.5
2 1.0 32 5
3 1.5 32 7.5
4 2.0 32 10
5 2.5 32 12.5
6 3.0 32 15
7 2.0 16 20
8 2.0 48 6.67
9 2.0 64 5
  
仿真分析工况
  双气室减振器的阻尼特性
10.16511/j.cnki.qhdxxb.2020.22.021.T006

双气室式液阻减振器阻尼力反向迟滞特性

工况 伸张行程阻尼力反向迟滞 压缩行程阻尼力反向迟滞
ηF ηt ηF ηt
1 0.099 0.032 0.248 0.052
2 0.165 0.068 0.192 0.054
3 0.177 0.085 0.189 0.055
4 0.178 0.096 0.154 0.058
5 0.174 0.101 0.136 0.061
6 0.169 0.105 0.092 0.060
7 0.237 0.142 0.237 0.102
8 0.149 0.076 0.123 0.041
9 0.132 0.065 0.104 0.035
  
双气室式液阻减振器阻尼力反向迟滞特性
1 LUO F , ZHANG X L . A review of aeration and cavitation phenomena in the hydraulic shock absorber[J]. Applied Mechanics and Materials, 2014. 536-537, 1369- 1373.
doi: 10.4028/www.scientific.net/AMM.536-537.1369
2 LANG H H. A study of the characteristics of automotive hydraulic dampers at high stroking frequencies[D]. Ann Arbor, USA: University of Michigan, 1977.
3 ALONSO M , COMAS á . Thermal model of a twin-tube cavitating shock absorber[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2008. 222 (11): 1955- 1964.
doi: 10.1243/09544070JAUTO829
4 CASTELLANI F , SCAPPATICCI L , BARTOLINI N , et al. Numerical and experimental investigation of a monotube hydraulic shock absorber[J]. Archive of Applied Mechanics, 2017. 87 (12): 1929- 1946.
doi: 10.1007/s00419-017-1302-5
5 SKRICKIJ V , SAVITSKI D , IVANOV V , et al. Investigation of cavitation process in monotube shock absorber[J]. International Journal of Automotive Technology, 2018. 19 (5): 801- 810.
doi: 10.1007/s12239-018-0077-1
8 THAREHALLI MATA G , KUMAR H , MAHALINGAM A . Performance analysis of a semi-active suspension system using coupled CFD-FEA based non-parametric modeling of low capacity shear mode monotube MR damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019. 233 (5): 1214- 1231.
doi: 10.1177/0954407018765899
9 CZOP P , GNI?KA J . Reducing aeration and cavitation effect in shock absorbers using fluid-structure interaction simulation[J]. Computer Assisted Methods in Engineering and Science, 2017. 23 (4): 171- 189.
12 BATHE K J . Finite element procedures[M]. 2nd ed. Watertown, USA: Klaus-Jurgen Bathe, 2014.
[1] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[2] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[3] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[4] 吕振华, 李明. 锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J]. 清华大学学报(自然科学版), 2018, 58(1): 35-42.
[5] 吕振华, 刘赛. 枪弹穿甲过程仿真的有限元接触模型与分区并行计算误差特性[J]. 清华大学学报(自然科学版), 2017, 57(5): 483-490.
[6] 贾晓红, 陈华明, 励行根, 王玉明. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 167-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn